全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于HJ-CCD数据的海面溢油提取方法研究

DOI: 10.6046/gtzyyg.2014.02.17, PP. 99-104

Keywords: 溢油,HJ-1,墨西哥湾,纹理特征,决策树

Full-Text   Cite this paper   Add to My Lib

Abstract:

快速、准确地获取溢油污染信息,对海洋的动态监测、保护和可持续利用具有重要意义。环境与灾害监测预报小卫星星座一号(HJ-1)是我国针对生态环境污染和灾害监测发射的新型卫星平台,但HJ-1CCD多光谱数据的光谱波段较少,仅依赖光谱信息获取海面溢油范围的精度较低。因此,以墨西哥湾溢油事件为研究对象,在分析不同地物光谱特征的基础上,采用灰度共生矩阵,选择合适的纹理结构因子,提取HJ-1CCD图像中影响溢油识别的地物纹理特征;建立光谱特征和纹理特征相结合的决策树模型,提取海面溢油信息,并与只考虑光谱信息的传统分类方法进行精度对比。结果表明,与最大似然分类法相比,决策树方法的油膜提取用户精度和制图精度分别提高了11.85%和4.28%。

References

[1]  Carnesecchi F,Byfield V,Cipollini P,et al.An optical model for the interpretation of remotely sensed multispectral images of oil spill[C]//Charles R.Proceeding SPIE 7105,Remote Sensing of the Ocean,Sea Ice and Large Water Regions 2008.Wales,2008.
[2]  Li Y,Ma L,Yu S M,et al.Remote sensing of marine oil spills and its applications[C]//Tong Q X.Remote Sensing of the Environment:16th National Symposium on Remote Sensing of China.Beijing,2007.
[3]  牛亚琴.基于遥感图像的海上溢油现象识别研究[D].舟山:浙江海洋学院,2012. Niu Y Q.Identification of marine spilled oil based on remote sensing image[D].Zhoushan:Zhejiang Ocean University,2012.
[4]  Tseng W Y,Chiu L S.AVHRR observations of Persian Gulf oil spills[C]//IEEE International Geoscience and Remote Sensing Symposium.Pasadena:IEEE,1994:779-782.
[5]  侯懿峰.MODIS数据解析及海面溢油分类研究[D].大连:大连海事大学,2012. Hou Y F.The research on MODIS data processing and marine oil spill classification[D].Dalian:Dalian Maritime University,2012.
[6]  陆应诚,陈君颖,包颖,等.基于HJ-1星CCD数据的溢油遥感特性分析与信息提取[J].中国科学:信息科学,2011,41(增刊):193-201. Lu Y C,Chen J Y,Bao Y,et al.Using HJ-1 satellite CCD data for remote sensing analysis and information extraction in oil spill scenarios[J].Scientia Sinica:Informationis,2011,41(s1):193-201.
[7]  姜良美,王芳,肖志坤,等.基于纹理特征的微山湖湿地信息提取研究[J].湖南科技大学学报:自然科学版,2011,26(4):68-72. Jiang L M,Wang F,Xiao Z K,et al.Study on extracting wetland information in Weishanhu Lake area based on texture feature[J].Journal of Hunan University of Science and Technology:Natural Science Edition,2011,26(4):68-72.
[8]  张砾.辅以纹理特征的洪泽湖湿地信息提取[J].遥感信息,2010(3):30-34. Zhang L.Wetland information extraction combined with texture features[J].Remote Sensing Information,2010(3):30-34.
[9]  Haralick R M,Shanmugam K,Dinstein I.Textural features for image classification[J].IEEE Transactions on Systems,Man and Cybernetics,1973,3(6):610-621.
[10]  Franklin S E,Hall R J,Moskal L M,et al.Incorporating texture into classification of forest species composition from airborne multispectral images[J].International Journal of Remote Sensing,2000,21(1):61-79.
[11]  Li G Y,Lu D S,Moran E,et al.A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,70:26-38.
[12]  冯建辉,杨玉静.基于灰度共生矩阵提取纹理特征图像的研究[J].北京测绘,2007(3):19-22. Feng J H,Yang Y J.Study of texture images extraction based on gray level co-occurence matrix[J].Beijing Surveying and Mapping,2007(3):19-22.
[13]  谭湘莹,于秀兰,钱国蕙.一种大小窗口结合的SAR图像纹理特征分类方法[J].系统工程与电子技术,2000,22(4):15-17. Tan X Y,Yu X L,Qian G H.A classification method by use of SAR image texture characteristics with combination of large and small windows[J].Systems Engineering and Electronics,2000,22(4):15-17.
[14]  Kasapoglu N G,Yazgan B,Akleman F.Hierarchical decision tree classification of SAR data with feature extraction method based on spatial variations[C]//IEEE International Geoscience and Remote Sensing Symposium.Toulouse,2003:3453-3455.
[15]  赵文吉,段福州,刘晓萌,等.ENVI遥感影像处理专题与实践[M].北京:中国环境科学出版社,2007:54. Zhao W J,Duan F Z,Liu X M,et al.ENVI processing topics and practice for remote sensing images[M].Beijing:China Environmental Science Press,2007:54.
[16]  巴桑,刘志红,张正健,等.决策树在遥感影像分类中的应用[J].高原山地气象研究,2011,31(2):31-34. Ba S,Liu Z H,Zhang Z J,et al.Decision tree and its application in remote sensing image classification[J].Plateau and Mountain Meteorology Research,2011,31(2):31-34.
[17]  Camilla B,Solberg A H S.Oil spill detection by satellite remote sensing [J].Remote Sensing of Environment,2005,95(1):1-13.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133