全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于加权滤波经验模式分解的遥感图像融合

DOI: 10.6046/gtzyyg.2014.03.10, PP. 61-66

Keywords: 经验模式分解(EMD),加权滤波经验模式分解(WFEMD),图像融合,内涵模式分量(IMF)

Full-Text   Cite this paper   Add to My Lib

Abstract:

加权滤波经验模式分解(weightedfilterempiricalmodedecomposition,WFEMD)作为一种新的多尺度、多分辨率分析方法,与小波、超小波和现有二维经验模式分解方法相比,更加适合于二维图像中的细节特征分析。该方法运用自适应加权滤波器直接求取均值面,解决了传统二维经验模式分解(empiricalmodedecomposition,EMD)方法的固有缺陷;将WFEMD方法引入遥感图像融合,能够更好地提取原始图像的特征,为图像融合提供更多的信息。鉴于此,提出了一种基于WFEMD变换的图像融合方法。首先,利用WFEMD的自适应性、多尺度性和高频细节信息的强获取能力,将待融合的图像分别进行WFEMD分解,对不同图像的内涵模式分量(intrinsicmodefunctions,IMF)按照该文提出的细节/背景原则进行融合,剩余分量按照平均原则进行融合。最后,将融合后的内涵模式分量重构,获取融合图像。实验证明,该方法的融合效果优于其他图像融合方法。

References

[1]  吴艳,杨万海,李明.基于小波分解和进化策略的图像融合方法[J].光学学报,2003,23(6):671-676. Wu Y,Yang W H,Li M.Image fusion based on wavelet decomposition and evolutionary strategy[J].Acta Optica Sinica,2003,23(6):671-676.
[2]  董张玉,赵萍,刘殿伟,等.一种改进的小波变换融合方法及其效果评价[J].国土资源遥感,2012,24(3):44-49. Dong Z Y,Zhao P,Liu D W,et al.An improved wavelet transformation image fusion method and evaluation of its fusion result[J].Remote Sensing for Land and Resources,2012,24(3):44-49.
[3]  范文婷,傅平.一种基于小波变换的遥感图像融合方法[J].国土资源遥感,2008,20(3):24-26. Fan W T,Fu P.A remote sensing image fusion method on wavelet transform[J].Remote Sensing for Land and Resources,2008,20(3):24-26.
[4]  路雅宁,郭雷,李晖晖.结合边缘信息和图像特征信息的曲波域遥感图像融合[J].光子学报,2012,41(9):1118-1123. Lu Y N,Guo L,Li H H.Remote sensing image fusion using edge information and features of SAR image based on curvelet transform[J].Acta Photonica Sinica,2012,41(9):1118-1123.
[5]  Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society,London A,1998,454(1971):903-995.
[6]  Damerval C,Meignen S,Perrier V.A fast algorithm for bidimensional EMD[J].IEEE Signal Processing Letters,2005,12(10):701-704.
[7]  Xu Y,Liu B,Liu J,et al.Two-dimensional empirical mode decomposition by finite elements[J].Proceedings of the Royal Society,London A,2006,462(2074):3081-3096.
[8]  Xu G L,Wang X T,Xu X G.Improved bi-dimensional EMD and Hilbert spectrum for the analysis of textures[J].Pattern Recognition,2009,42(5):718-734.
[9]  Wu Z H,Huang N E,Chen X Y.Multi-dimensional ensemble empirical mode decomposition[J].Advances in Adaptive Data Analysis,2009,1(3):339-372.
[10]  Ahmed M U,Mandic D P.Image fusion based on fast and adaptive bidimensional empirical mode decomposition[C]//2010 13th Conference on Information Fusion.London,UK:IEEE Conference Proceedings,2010:1-6.
[11]  Ohta Y I,Kanade T,Sakai T.Color information for region segmentation[J].Computer Graphic and Image Processing,1980,13(3):222-241.
[12]  高绍姝,金维其,王玲雪,等.图像融合质量客观评价方法[J].应用光学,2011,32(4):671-677. Gao S H,Jin W Q,Wang L X,et al.Objective quality assessment of image fusion[J].Journal of Applied Optics,2011,32(4):671-677.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133