全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
高原气象  2014 

夏季青藏高原地区水汽收支的初步模拟分析

DOI: 10.7522/j.issn.1000-0534.2013.00117, PP. 1173-1181

Keywords: 青藏高原,水汽收支,夏季降水,蒸发

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用中尺度模式WRF对夏季青藏高原地区降水进行了长达37天的积云可分辨模拟试验,在模式较好再现了夏季青藏高原降水的空间分布和日变化特征的基础上,利用高时空分辨率模拟结果进行了该地区水汽收支分析。结果表明:夏季青藏高原的降水主要来自水汽的辐合,辐合集中在低层,与青藏高原南部的夜间低空急流密切相关,具有显著的日变化特征;水汽收支方程中的垂直输送项起着将水汽从低层向中高层输送的重要作用,水汽局部变化项则很小,可以忽略;夏季青藏高原的蒸发主要集中在正午前后的6h内,且蒸发量约为降水量的1/2,表明区域水汽再循环的重要性。

References

[1]  Yanai M, Esbensen S, Chu J H. Determination of average bulk properties of tropical cloud clusters from larger-scale heat and moisture budgets[J]. J Atmos Sci, 1973, 30(4): 611-627. 2.0.CO;2 target="_blank">
[2]  周天军, 张学洪, 王绍武. 全球水循环的海洋分量研究[J]. 气象学报, 1999, 57(3): 264-282.
[3]  Liu C, Ikeda K, Thompson G, et al. High-resolution simulations of wintertime precipitation in the Colorado headwaters region: Sensitivity to physics parameterizations[J]. Mon Wea Rev, 2011, 139: 3533-3553.
[4]  胡国权, 丁一汇. 1991年江淮梅雨时期的能量和水汽循环研究[J]. 气象学报, 2003, 61(2): 146-163.
[5]  周玉淑, 高守亭, 邓国. 江淮流域2003年强梅雨期的水汽输送特征分析[J]. 大气科学, 2005, 29(2): 195-204.
[6]  苗秋菊,徐祥德,张胜军. 长江流域水汽收支与高原水汽输送分量“转换”特征[J]. 气象学报, 2005, 63(1): 93-99.
[7]  徐祥德, 陶诗言, 王继志, 等. 青藏高原——季风水汽输送“大三角扇形”影响域特征与中国区域旱涝异常的关系[J]. 气象学报, 2002, 60(3): 258-264.
[8]  陶诗言, 伊兰. 青藏高原在亚洲季风区水分循环中的作用[C]//陶诗言,陈联寿,徐祥德, 等编著. 第二次青藏高原大气科学实验理论研究进展. 北京: 气象出版社, 1999: 204-214.
[9]  田红瑛,田文寿,雒佳丽,等. 青藏高原地区上对流层—下平流层区域水汽分布和变化特征[J]. 高原气象, 2014, 33(1): 1-13, doi: 10.7522/j.issn.1000-0534.2013.00074. 浏览
[10]  周长艳, 李跃清, 李薇, 等. 青藏高原东部及邻近地区水汽输送的气候特征[J]. 高原气象, 2005, 24(6): 880-888.
[11]  丁一汇, 胡国权. 1998年中国大洪水时期的水汽收支研究[J]. 气象学报, 2003, 61(2): 129-145.
[12]  张万诚, 万云霞, 任菊章, 等. 水汽输送异常对2009年秋、冬季云南降水的影响研究[J]. 高原气象, 2011, 30(6): 1534-1542. 浏览
[13]  李进, 李栋梁, 张杰. 黄河流域冬、夏季水汽输送及收支特征[J]. 高原气象, 2012, 31(2): 342-350. 浏览
[14]  杨莲梅, 张云惠, 汤浩. 2007年7月新疆三次暴雨过程的水汽特征分析[J]. 高原气象, 2012, 31(4): 963-973. 浏览
[15]  李江林, 李照荣, 杨建才, 等. 近10年夏季西北地区水汽空间分布和时间变化分析[J]. 高原气象, 2012, 31(6): 1574-1582. 浏览
[16]  赵天保, 符淙斌. 中国区域ERA-40、NCEP-2再分析资料与观测资料的初步比较与分析[J]. 气候与环境研究, 2006, 11(1): 14-32.
[17]  Rosen R D, Salstein D A, Peixoto J P. Variability in the annual fields of large-scale atmospheric water vapor transport[J]. Mon Wea Rev, 1979, 107: 26-37. 2.0.CO;2 target="_blank">
[18]  Trenberth K E. Climate diagnostics from global analyses: Conservation of mass in ECMWF analyses[J]. J Climate, 1991, 4: 707-722. 2.0.CO;2 target="_blank">
[19]  Gutowski W J, Chen Y, ?tles Z. Atmospheric water vapor transport in NCEP/NCAR reanalyses: Comparison with river discharge in the central United States[J]. Bull Amer Meteor Soc, 1997, 78: 1957-1969. 2.0.CO;2 target="_blank">
[20]  Roads J, Chen S, Kanamitsu M, et al. Vertical structure of humidity and temperature budget residuals over the Mississippi River basin[J]. J Geophys Res, 1998, 103(D4): 3741-3759.
[21]  Berbery E H, Rasmusson E M. Mississippi moisture budgets on regional scales[J]. Mon Wea Rev, 1999, 127: 2654-2673. 2.0.CO;2 target="_blank">
[22]  Berbery E H, Luo Y, Mitchell K, et al. Eta model-estimated land surface processes and the hydrologic cycle of the Mississippi basin[J]. J Geophys Res, 2003, 108(D22), 8852, doi:10.1029/2002JD003192.
[23]  Becker E J, Berbery E H. Model simulation of the diurnal cycle and moist surges along the Gulf of California during NAME[J]. J Climate, 2008, 28: 771-787.
[24]  Xu J, Zhang B, Wang M, et al. Diurnal variation of summer precipitation over the Tibetan Plateau: A cloud-resolving simulation[J]. Annales Geophysicae, 2012, 30(11): 1575-1586.
[25]  Sato T, Yoshikane T, Satoh M, et al. Resolution dependency of the diurnal cycle of convective clouds over the Tibetan Plateau in a mesoscale model[J]. J Meteor Soc Japan, 2008, 86: 17-31.
[26]  Klemp J B, Skamarock W C, Dudhia J. Conservative split-explicit time integration methods for the compressible nonhydrostatic equations[J]. Mon Wea Rev, 2007, 135: 2897-2913.
[27]  Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-K model for the longwave[J]. J Geophys Res, 1997, 102(D14): 16663-16682.
[28]  Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J Atmos Sci, 1989, 46: 3077-3107. 2.0.CO;2 target="_blank">
[29]  Hong S Y, Lim J O J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6)[J]. J Korean Meteor Soc, 2006, 42: 129-151.
[30]  Chen F, Dudhia J. Coupling an advanced landsurface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity[J]. Mon Wea Rev, 2001, 129: 569-585. 2.0.CO;2 target="_blank">
[31]  Kain J S. The Kain-Fritsch convective parameterization: An update[J]. J Appl Meteor, 2004, 43: 170-181. 2.0.CO;2 target="_blank">
[32]  Huffman G J, Adler R F, Bolvin D, et al. The TRMM multi-satellite precipitation analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale[J]. J Hydrometeor, 2007, 8(1): 38-55.
[33]  Liu X, Bai A, Liu C. Diurnal variations of summertime precipitation over the Tibetan Plateau in relation to orographically-induced regional circulations[J]. Environ Res Lett, 2009, 4: 045203, doi:10.1088/1748-9326/4/4/045203.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133