全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
高原气象  2011 

金塔绿洲土壤中蒸发/凝结过程的初步分析

, PP. 1462-1471

Keywords: 金塔绿洲,热传导方程,蒸发/凝结过程,地表能量平衡,土壤热储

Full-Text   Cite this paper   Add to My Lib

Abstract:

用2005年6月27日~7月4日金塔绿洲地表及0.40m土壤温度观测资料作为边界条件,结合一维土壤热传导方程计算了该时段0.05,0.10和0.20m深处的土壤温度。通过比较同时段观测值与计算值的观测,发现0.05m深处的土壤温度计算值与观测值的差异最大。结果表明,在方程中只需简单考虑浅层土壤蒸发/凝结过程,便可以使模拟结果得到显著改善。金塔绿洲地表能量通量分析表明,08:00~12:00浅层土壤有虚假的热储项;而在12:00~16:00则有偏大的地表潜热通量。这些能量不闭合现象可部分归结为在观测时未充分考虑绿洲浅层土壤蒸发/凝结过程。

References

[1]  Kristovich D A R, Braham R R. Mean profiles of moisture fluxes in snow-filled boundary layers[J]. Boundary-Layer Meteor, 1998, 87(2): 195-215.
[2]  Oncley S P, Foken T, Vogt R, et al. The energy balance experiment EBEX-2000.Part I: Overview and energy balance[J]. Boundary-Layer Meteor, 2007, 123(1): 1-28.
[3]  Trenberth K E, Caron J M, Stepaniak D P. The atmospheric energy budget and implications for surface fluxes and ocean heat transports[J]. Climate Dynam, 2001, 17(4): 259-276.
[4]  Mahrt L, Vickers D. Boundary-layer adjustment over small-scale changes of surface heat flux[J]. Boundary-Layer Meteor, 2005, 116(2): 313-330.
[5]  Michael E K, Richard H C. Variation in soil parameters: Implications for modeling surface fluxes and atmospheric boundary-layer development[J]. Boundary-Layer Meteor, 1994, 70(4): 369-383.
[6]  Watterson I G, Dix M R. Influences on surface energy fluxes in simulated present and doubled CO2 climates[J]. Climate Dynam, 1996, 12(5): 359-370.
[7]  ZHU Chunmei, Lettenmaier D P. Long-term climate and derived surface hydrology and energy flux data for mexico: 1925 2004[J]. J Climate, 2007, 20(9): 1936-1946.
[8]  Hammerle A, Haslwanter A, Schmitt M, et al. Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope[J]. Boundary-Layer Meteor, 2007, 122(2): 397-416.
[9]  Bernhofer C. Applying a simple three-dimensional eddy correlation system for latent and sensible heat flux to contrasting forest canopies[J]. Theor Appl Climatol, 1992, 46(2/3): 163-172.
[10]  Culf A D, Foken T, Gash J H C . Vegetation, Water, Humans and the Climate-A New Perspective on an Interactive System [M]. Hamburg: Springer Verlag, 2004: 159-166.
[11]  Heusinkveld B G, Jacobs A F G, Holtslag A A M, et al. Surface energy balance closure in an arid region: Role of soil heat flux[J]. Agric For Meteor, 2004,122(1/2): 21-37.
[12]  Jacobs A F G, Heusinkveld B G, Holtslag A A M. Towards closing the surface budget of a mid-latitude grassland[J]. Boundary-Layer Meteor, 2008,126(1): 125-136.
[13]  Anderson D E, Verma S B, Rosenberg N J. Eddy correlation measurements of CO2, latent heat, and sensible heat fluxes over a crop surface[J]. Boundary-Layer Meteor, 1984, 29(3): 263-272.
[14]  YANG Kun, WANG Jiemin. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J]. Sci China Ser D: Earth Sci, 2008, 51(5): 721-729.
[15]  Weber S, Graf A, Heusinkveld B G. Accuracy of soil heat flux plate measurements in coarse substrates-Field measurements versus a laboratory test[J]. Theor Appl Climatol, 2007, 89(1/2): 109-114.
[16]  Gao Zhiqiu, Fan Xingang, Bian Lingen. Analytical Solution to one-dimensional thermal conduction-convection in soil[J]. Soil Sci, 2003, 168(2): 99-106.
[17]  Gao Zhiqiu. Determination of soil heat flux in a Tibetan short-grass prairie[J]. Boundary-Layer Meteor, 2005, 114(1): 165-178.
[18]  Ren D, Leslie L M, Karoly D J. Sensitivity of an ecological model to soil moisture simulations from two different hydrological models[J]. Meteor Atmos Phys, 2008, 100(1/4): 87-99.
[19]  Warrach K, Mengelkamp H T, Raschke T. Treatment of frozen soil and snow cover in the land surface model SEWAB[J]. Theor Appl Climatol, 2001, 69(1/2): 23-37.
[20]  Shao Yaping, Irannejad P. On the choice of soil hydraulic models in land-surface schemes[J]. Boundary-Layer Meteor, 1999, 90(1): 83-115.
[21]  Yang Kun, Koike T, Ye B, et al. Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition[J]. J Geophys Res, 2005, 110, D08101, doi:10.1029/2004JD005500.
[22]  Olivella S, Gens A. Vapour transport in low permeability unsaturated soils with capillary effects[J]. Transport Porous Med, 2000, 40(2): 219-241.
[23]  Poutou E, Krinner G, Genthon C, et al. Role of soil freezing in future boreal climate change[J]. Clim Dynam, 2004, 23(6): 621-639.
[24]  Li Qian, Sun ShuFen. Development of the universal and simplified soil model coupling heat and water transport[J]. Sci China Ser D: Earth Sci, 2008, 51(1): 88-102.
[25]  Hu Heping, Ye Baisheng, Zhou Yuhua, et al. A land surface model incorporated with soil freeze/thaw and its application in GAME/Tibet[J]. Sci China Ser D: Earth Sci, 2006, 49(12): 1311-1322.
[26]  Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resour Res, 1973, 9(5): 1314-1323.
[27]  Garratt J R, Segal M. On the contribution of atmospheric moisture to dew formation[J]. Boundary-Layer Meteor, 1988, 45(3): 209-236.
[28]  Jacobs A F G, Pul A, El-Kilani R M M. Dew formation and the drying process within a maize canopy[J]. Boundary-Layer Meteor, 1994, 69(4): 367-378.
[29]  Barradas V L, Glez-Medellín M G. Dew and its effect on two heliophile understorey species of a tropical dry deciduous forest in Mexico[J]. Int J Biometeor, 1999, 43(1): 1-7.
[30]  Luo Weihong, Goudriaan J. Measuring dew formation and its threshold value for net radiation loss on top leaves in a paddy rice crop by using the dewball: A new and simple instrument[J]. Int J Biometeor, 2000, 44(4): 167-171.
[31]  Wang J, Yasushi M. Evaporation from desert: some preliminary results of HEIFE[J]. Boundary-Layer Meteor, 1992, 59(4): 413-418.
[32]  Wang J, Ma Y, Menenti M, et al. The scaling-up of processes in the heterogeneous landscape of HEIFE with the aid of satellite remote sensing: HEIFE[J]. J Meteor Soc Japan, 1995, 73(6): 1235-1244.
[33]  Mitsuta Y, Hayashi T, Takemi T, et al. Two severe local storms as observed in the arid area of Northwest China: HEIFE[J]. J Meteor Soc Japan, 1995, 73(6): 1269-1284.
[34]  Tamagawa I. Turbulent characteristics and bulk transfer coefficients over the desert in the HEIFE area[J]. Boundary-Layer Meter, 1996, 77(7): 1-20.
[35]  孙菽芬, 牛国跃, 洪钟祥. 干旱及半干旱区土壤水热传输模式研究[J]. 大气科学, 1998, 22(1): 1-10.
[36]  谢忠奎, 王亚军, 兰念军, 等. 黑河地区土壤及小麦体内水分动态观测分析[J]. 高原气象, 2000, 19(3): 385-390.
[37]  康尔泗, 程国栋, 宋克超, 等. 河西走廊黑河山区土壤—植被—大气系统能水平衡模拟研究[J]. 中国科学(D辑), 2004, 34(6): 544-551.
[38]  张宇, 吕世华, 陈世强, 等. 绿洲边缘夏季小气候特征及地表辐射与能量平衡分析[J].高原气象, 2005, 24( 4): 527-533.
[39]  姜金华, 胡非, 角媛梅. 黑河绿洲区不均匀下垫面大气边界层结构的大涡模拟研究[J]. 高原气象, 2005, 24(6): 857-864.
[40]  吴锦奎, 丁永建, 魏智, 等. 黑河中游间作农田的辐射收支特征分析[J]. 高原气象, 2007, 26(2): 286-292.
[41]  高艳红, 程国栋, 刘伟, 等. 黑河流域土壤参数修正及其对大气要素模拟的影响[J]. 高原气象, 2007, 26(5): 958-966.
[42]  王维真, 徐自为, 刘绍民, 等. 黑河流域不同下垫面水热通量特征分析[J]. 地球科学进展, 2009, 24(7): 714-723.
[43]  孙菽芬. 陆面过程的物理、 生化机理和参数化模型[M]. 北京: 气象出版社, 2005: 1-307.
[44]  王少影, 张宇, 吕世华, 等. 金塔绿洲湍流资料的质量控制[J]. 高原气象, 2009, 28(6): 1260-1273. 浏览
[45]  王少影, 张宇, 吕世华, 等. 应用通量方差法估算戈壁绿洲下垫面湍流通量的研究[J]. 大气科学, 2010, 34(6): 1214-1222.
[46]  徐自为, 刘绍民, 宫丽娟, 等. 涡动相关仪观测数据的处理与质量评价研究[J]. 地球科学进展, 2008, 23(4): 357-370.
[47]  Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapor transfer[J]. Quart J Roy Meteor Soc, 1980, 106: 85-100.
[48]  Garratt J R. The Atmospheric Boundary Layer[M]. Cambridge: Cambridge University Press, 1992: 1- 316.
[49]  Foken T. The energy balance closure problem: An overview[J]. Ecol Appl, 2008, 18(6): 1351-1367.
[50]  Liu S M, Xu Z W, Wang W Z, et al. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem[J]. Hydrol Earth Syst Sci, 2011, 15: 1291-2011.
[51]  Han B, Lu S, Ao Y. Analysis on the interaction between turbulence and secondary circulation of the surface layer at Jinta oasis in summer[J]. Adv Atm Sci, 2010, 27(3): 605-625.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133