Qiu J. The third pole[J]. Nature, 2008, 454(24): 393-396.
[2]
Cheng G, Wu T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. J Geophys Res, 2007, 112(F2): 93-104.
Ma Y, Fan S, Ishikawa H, et al. Diurnal and inter-monthly variation of land surface heat fluxes over the central Tibetan Plateau area[J]. Theor Appl Climatol, 2004, 80: 259-273.
Koster R D, Dirmeyer P A, Guo Z C, et al. Regions of strong coupling between soil moisture and precipitation[J]. Science, 2004, 305: 1138-1140.
[9]
Zhang J, Wang W, Wei J. Assessing land-atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation[J]. J Geophys Res: Atmospheres, 2008, 113(D17): 1161-1165.
[10]
Dai Y J, Shangguan W, Duan Q Y, et al. Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling[J]. J Hydrometeor, 2013, 14: 869-887.
[11]
Wang G X, Li S N, Hu H C, et al. Water regime shifts in the active soil layer of the Qinghai-Tibet Plateau permafrost region, under different levels of vegetation[J]. Geoderma, 2009, 149: 280-289.
[12]
Wang C T, Cao G M, Wang Q L, et al. Changes in plant biomass and species composition of alpine Kobresia meadows along altitudinal gradient on the Qinghai-Tibetan Plateau[J]. Science China: Life Sciences, 2008, 51: 86-94.
Chen Y Y, Yang K, Tang W J, et al. Parameterizing soil organic carbon's impacts on soil porosity and thermal parameters for Eastern Tibet grasslands[J]. Science China: Earth Sciences, 2012, 55: 1001-1011.
[15]
Yang K, Koike T, Ye B, et al. Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition[J]. J Geophys Res: Atmospheres, 2005, 110(D8): 211-211.
[16]
Lawrence D M, Slater A G. Incorporating organic soil into a global climate model[J]. Climate Dyn, 2008, 30: 145-160.
[17]
Yang K, Chen Y Y, Qin J. Some practical notes on the land surface modeling in the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2009, 13: 687-701.
Darrah P R. The rhizosphere and plant nutrition-a quantitative approach[J]. Plant and Soil, 1993, 155: 1-20.
[21]
Hinsinger P, Bengough A G, Vetterlein D, et al. Rhizosphere: biophysics, biogeochemistry and ecological relevance[J]. Plant and Soil, 2009, 321: 117-152.
[22]
Gregory P J. Roots, rhizosphere and soil: The route to a better understanding of soil science?[J]. European Journal of Soil Science, 2006, 57: 2-12.
[23]
Carminati A, Schneider C L, Moradi A B, et al. How the rhizosphere May favor water availability to roots[J]. Vadose Zone Journal, 2011, 10: 988-998.
[24]
McCully M E, Boyer J S. The expansion of maize root-cap mucilage during hydration 3. Changes in water potential and water content[J]. Physiologia Plantarum, 1997, 99: 169-177.
[25]
Young I M. Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum-Aestivum L Cv Wembley)[J]. New Phytologist, 1995, 130: 135-139.
[26]
Read D B, Gregory P J, Bell A E. Physical properties of axenic maize root mucilage[J]. Plant and Soil, 1999, 211: 87-91.
[27]
Carminati A, Vetterlein D. Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources[J]. Annals of Botany, 2013, 112: 277-290.
Tanaka K, Tamagawa I, Ishikawa H, et al. Surface energy budget and closure of the eastern Tibetan Plateau during the GAME-Tibet IOP 1998[J]. J Hydrol, 2003, 283: 169-183.
[31]
Van Der Velde R, Su Z, Ek M, et al. Influence of thermodynamic soil and vegetation parameterizations on the simulation of soil temperature states and surface fluxes by the Noah LSM over a Tibetan plateau site[J]. Hydrology and Earth System Sciences, 2009, 13: 759-777.
[32]
Perez P J, Castellvi F, Ibanez M, et al. Assessment of reliability of Bowen ratio method for partitioning fluxes[J]. Agricultural and Forest Meteorology, 1999, 97: 141-150.
[33]
Niu G, Yang Z, Mitchell K E, et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements[J]. J Geophys Res: Atmospheres, 2011, 116(D12): 1248-1256.
[34]
Gayler S, Wohling T, Grzeschik M, et al. Incorporating dynamic root growth enhances the performance of Noah-MP at two contrasting winter wheat field sites[J]. Water Resour Res, 2014, 50: 1337-1356.
[35]
Cosby B J, Hornberger G M, Clapp R B, et al. A statistical exploration of the relationships of soil-moisture characteristics to the physical-properties of soils[J]. Water Resour Res, 1984, 20: 682-690.
[36]
Clapp R B, Hornberger G M. Empirical equations for some soil hydraulic-properties[J]. Water Resour Res, 1978, 14: 601-604.
[37]
Peters-Lidard C D, Blackburn E, Liang X, et al. The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures[J]. J Atmos Sci, 1998, 55: 1209-1224. 2.0.CO;2 target="_blank">
Or D, Phutane S, Dechesne A. Extracellular polymeric substances affecting pore-scale hydrologic conditions for bacterial activity in unsaturated soils[J]. Vadose Zone Journal, 2007, 6: 298-305.
[40]
Nash J E, Sutcliffe J V. River flow forecasting through conceptual models I-A discussion of principles[J]. J Hydrol, 1970, 10: 282-290.
[41]
Moriasi D N, Arnold J G, Van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the Asabe, 2007, 50: 885-900.
[42]
Xue Y K, Vasic R, Janjic Z, et al. The impact of spring subsurface soil temperature anomaly in the western U.S. on North American summer precipitation: A case study using regional climate model downscaling[J]. J Geophys Res: Atmospheres, 2012, 117: 90-100.
[43]
Wu L, Zhang J. Strong subsurface soil temperature feedbacks on summer climate variability over the arid/semi-arid regions of East Asia[J]. Atmos Sci Lett, 2014, 15: 307-313.
[44]
Yang K, Koike T, Ishikawa H, et al. Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization[J]. J Appl Meteor Climatol, 2008, 47: 276-290.
[45]
Li Yuan, Sun Rui, Liu Shaomin. Vegetation physiological parameter setting in the Simple Biosphere model 2 (SiB2) for alpine meadows in the upper reaches of Heihe river[J]. Scince China: Earth Science, 2014, 58: 755-769.