全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
高原气象  2015 

基于FY-2的大气强迫数据构建及模拟检验

DOI: 10.7522/j.issn.1000-0534.2014.00087, PP. 1041-1048

Keywords: 大气强迫数据,FYDATA,土壤湿度,陆面模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过陆面模式模拟得到的陆面参数精度易受强迫数据质量的影响,为了提高基于NCEP/NCAR的强迫数据精度,提出了一种新的强迫数据构造方法。该方法以静止气象卫星FY-2的反演产品——逐时降水估计和地面入射太阳辐射数据为基础,结合部分NCEP/NCAR再分析数据构造用于陆面模式模拟的高时空分辨率强迫数据(FYDATA),进一步利用陆面模式CLM3.0模拟得到较高精度的时空间连续的土壤湿度数据。与站点观测数据的比较表明,FYDATA的模拟结果在空间分布和时间变率上与观测数据均较为一致;与再分析数据的模拟结果比较表明,无论是月平均的站点尺度还是区域尺度,FYDATA的模拟结果都优于时空分辨率较粗的NCEP/NCAR再分析数据的模拟结果,充分说明该数据构造方法的有效性。

References

[1]  朱亚芬. 530年来中国东部旱涝分区及北方旱涝演变[J]. 地理学报, 2003, 58(7):100-107.
[2]  马柱国, 黄刚, 甘文强, 等. 近代中国北方干湿变化趋势的多时段特征[J]. 大气科学, 2005, 29(5):671-681.
[3]  Ma Zhuguo, Dan Li, Hu Yuewen. The extreme dry/wet events in northern China during recent 100 years[J]. J Geograph Sci, 2004, 14(3):275-281.
[4]  孙丞虎, 李维京, 张祖强, 等. 淮河流域土壤湿度异常的时空分布特征及其与气候异常关系的初步分析[J]. 应用气象学报, 2005, 16(2):129-138.
[5]  Niu Guoyue, Yang Zongliang. Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J]. J Hydrometeor, 2006, 7(5):937-952.
[6]  陈海山, 熊明明, 沙文钰. CLM3.0对中国区域陆面过程的模拟及评估Ⅰ:土壤温度[J]. 气象科学, 2010, 30(5):621-630.
[7]  成璐. 融合降水及多种卫星降水产品评估研究[D]. 南京:南京信息工程大学, 2013:1-65.
[8]  史小康, 文军, 王磊, 等. AMSR-E 卫星亮度温度数据在高原东北部土壤湿度观测和模拟中的应用[J]. 高原气象, 2010, 29(3):545-553. 浏览
[9]  赵逸舟, 马耀明, 黄镇, 等. 利用TRMM/TMI 资料反演青藏高原中部土壤湿度[J]. 高原气象, 2007, 26(5):952-957.
[10]  陈渤黎, 吕世华, 罗斯琼. CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(6):1511-1522.
[11]  熊建胜, 张宇, 王少影, 等. CLM4.0土壤水分传输方案改进在青藏高原陆面过程模拟中的效应[J]. 高原气象, 2014, 33(2):323-336, doi:10.7522/j.issn.1000-0534.2014.00012.
[12]  刘惠民, 邓慧平, 孙菽芬, 等. 陆面模式SSiB耦合TOPMODEL对流域水文模拟影响的数值试验[J]. 高原气象, 2013, 32(3):829-838, doi:10.7522/j.issn.1000-0534.2012.00076. 浏览
[13]  Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Amer Meteor Soc, 1996, 77(3):437-471. 2.0.CO;2 target="_blank">
[14]  Berg A A, Famiglietti J S, Walker J P, et al. Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes[J]. J Geophys Res, 2003,108(D16), 4490, doi:10.1029/2002JD003334.
[15]  Qian T T, Dai A G, Trenberth K E, et al. Simulation of global land surface conditions from 1948-2004. Part I:Forcing data and evaluation[J]. J Hydrometeor, 2006, 7(5):953-975.
[16]  Nijssen B, O'Donnell G M, Lettenmaier D P, et al. Predicting the discharge of global rivers[J]. J Climate, 2001, 14(15):3307-3323. 2.0.CO;2 target="_blank">
[17]  Maurer E P, Wood A W, Adam J C, et al. A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States[J]. J Climate, 2002, 15(22):3237-3251. 2.0.CO;2 target="_blank">
[18]  Yun Fan, Huug van den Dool. Climate Prediction Center global monthly soil moisture data set at 0.5 resolution for 1948 to present[J]. J Geophys Res, 2004, 109(D10), D10102, doi:10.1029/2003JD004345.
[19]  Chen M Y, Xie P P, Janowiak J E, et al. Global land precipitation:A 50-year monthly analysis based on gauge observations[J]. J Hydrometeor, 2002, 3(3):249-266. 2.0.CO;2 target="_blank">
[20]  Sheffield J, Ziegler A D, Wood E F, et al. Correction of the high-latitude rain day anomaly in the NCEP/NCAR reanalysis for land surface hydrological modeling[J]. J Climate, 2004, 17(19):3814-3828. 2.0.CO;2 target="_blank">
[21]  Ngo-Duc T, Polcher J, Laval K, et al. A 53-year forcing data set for land surface models[J]. J Geophys Res, 2005, 110(D6), D06116, doi:10.1029/2004JD005434.
[22]  New M, Hulme M, Jones P. Representing twentieth century space time climate variability. Part I:Development of a 1961 90 mean monthly terrestrial climatology[J]. J Climate, 1999, 12(3):829-856. 2.0.CO;2 target="_blank">
[23]  New M, Hulme M, Jones P. Representing twentieth century space-time climate variability. Part II:Development of 1901 96 monthly grids of terrestrial surface[J]. J Climate, 2000, 13(13):2217-2238. 2.0.CO;2 target="_blank">
[24]  Houser P R. Remote-sensing soil moisture using four-dimensional data assimilation[D]. Arizona:University of Arizona, 1996:1-391.
[25]  Houser P R, Shuttleworth W J, Famiglietti J S, et al. Integration of soil moisture remote sensing and hydrologic modeling using data assimilation[J]. Water Resources, 1998, 34(12):3405-3420.
[26]  师春香, 谢正辉. 基于静止卫星观测的降水尺度转换[J]. 地理科学进展, 2008, 27(4):15-22.
[27]  刘瑞霞, 徐祥德, 刘玉洁. JICA综合观测与卫星数据在高原地区三维云和水汽场构建中的应用[J]. 高原气象, 2013, 32(6):1589-1596, doi:10.7522/j.issn.1000-0534.2012.00154. 浏览
[28]  Stamens K, Tsay S C, Warren W, et al. Numerically stable algorithm for discrete ordin ate method radiative transfer in multiple scattering and emitting layered media[J]. Appl Opt, 1998, 27(12):2502-2509.
[29]  师春香. 基于 EnKF 算法的卫星遥感土壤湿度同化研究[D]. 北京:中国科学院大气物理研究所, 2008:1-182.
[30]  Oleson K W, Dai Y J, Bonan G, et al. Technical description of the Community Land Model (CLM)[Z]. NCAR/TN-461+STR. NCAR Technical Note, 2004.
[31]  Dickinson R E, Oleson K W, Bonan G, et al. The community land model and its climate statistics as a component of the community climate system model[J]. J Climate, 2006, 19(11):2302-2324.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133