全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新疆乌鲁木齐地区中二叠统芦草沟组湖相微生物成因白云石特征*

DOI: 10.7605/gdlxb.2012.06.008, PP. 767-776

Keywords: 湖相,泥晶白云岩,微球状白云石,显微纹层,微生物矿化,芦草沟组,中二叠统,新疆

Full-Text   Cite this paper   Add to My Lib

Abstract:

新疆乌鲁木齐地区红雁池南剖面中二叠统芦草沟组主要发育浅湖至半深湖背景下的中、薄层深灰色白云岩、灰岩、粉砂岩与中、厚层灰黑色页岩、泥岩互层。白云岩主要由泥晶白云石、铁白云石及少量方解石、高镁方解石组成,富含有机质。白云石粒径约3~10μm,阴极发光呈现均匀昏暗的砖红色。白云石主要有微球状(直径约5~8μm)、微簇状(长度约2μm)及他形(1~10μm)等3种微形貌。微球状白云石具有显微纹层结构,似为生长纹层,放大至6万倍发现显微纹层是由无数纳米级颗粒构成。他形白云石放大至4万倍发现主要由大量直径约0.25μm的球状微粒聚集粘结而成,具有微生物矿化的特征。将研究区白云石与现代典型微生物成因白云石相比,其显微形态特征非常相似。研究区白云岩δ13CPDB为1.8‰~13.8‰,δ18OPDB为-12.1‰~-4.1‰,偏高的δ13C可能是产甲烷菌活动引起有机质碳同位素分馏的结果。以上特征表明,芦草沟组具有特殊形貌白云石的沉淀很可能与厌氧微生物密切相关。

References

[1]  黄志诚,杨守业,陈智娜.1996.原生白云石与交代白云石的矿物学对比研究[J].中国科学(D辑),26(6):544-550.
[2]  李波,颜佳新,刘喜停,等.2010.白云岩有机成因模式:机制、进展与意义[J].古地理学报,12(6):699-710.
[3]  于炳松,董海良,蒋宏忱,等.2007.青海湖底沉积物中球状白云石集合体的发现及其地质意义[J].现代地质,21(1):66-70.
[4]  张晓宝,王志勇,徐永昌.2000.特殊碳同位素组成白云岩的发现及其意义[J].沉积学报,18(3):449-452.
[5]  Alperin M J,Reeburgh W S,Whiticar M J.1988.Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation[J].Global Biogeochemical Cycles,2(3):279-288.
[6]  Baertschi P.1976.Absolute 18O content of standard mean ocean water[J].Earth and Planetary Science Letters,31:341-344.
[7]  Boetius A,Ravenschlag K,Schubert C J, et al.2000.A marine microbial consortium apparently mediating anaerobic oxidation of methane[J].Nature,407(6804):623-626.
[8]  Ciftcioglu N,McKay D S,Mathew G, et al.2006.Nanobacteria: Fact or fiction?characteristics,detection,and medical importance of novel self-replicating,calcifying nanoparticles[J].Journal of Investigative Medicine,54:385-394.
[9]  Compton J S.1988.Degree of supersaturation and precipitation of organogenic dolomite[J].Geology,16:318-321.
[10]  Deng S C,Dong H L,Guo L, et al.2010.Microbial dolomite precipitation using sulfate reducing and halophilic bacteria:Results from Qinghai Lake,Tibetan Plateau,NW China[J].Chemical Geology,278:151-159.
[11]  Fernndez-Diaz L,Astilleros J M,Pina C M.2006.The morphology of calcite crystals grown in a porous medium doped with divalent cations[J].Chemical Geology,225:314-321.
[12]  Folk R L.1993.SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks[J].Journal of Sedimentary Petrology,63:990-999.
[13]  Games L M,Hayes J M,Gunsalus R P.1978.Methane producing bacteria: Natural fractionations of the stable carbon isotopes[J].Geochimica et Cosmochimica Acta,42:1295-1297.
[14]  García del Cura M A,Calvo J P,Ordóez S, et al.2001.Petrographic and geochemical evidence for the formation of primary,bacterially induced lacustrine dolomite: La Roda ‘white earth’(Pliocene,central Spain)[J].Sedimentology,48: 897-915.
[15]  Jones B.2010.The preferential association of dolomite with microbes in stalactites from Cayman Brac,British West Indies[J].Sedimentary Geology,226: 94-109.
[16]  Kenward P A,Goldstein R H,Gonzlez L A, et al. 2009.Precipitation of low-temperature dolomite from an anaerobic microbial consortium: The role of methanogenic Archaea[J].Geobiology,7(5):556-565.
[17]  Korte C,Jasper T,Kozur H W, et al.2005.δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation[J].Palaeogeography,Palaeoclimatology,Palaeoecology,224:333-351.
[18]  Magaritz M,Stemmerik L.1989.Oscillation of carbon and oxygen isotope compositions of carbonate rocks between evaporative and open marine environments,Upper Permian of East Greenland[J].Earth and Planetary Science Letters,93(2):233-240.
[19]  Maniloff J.1997.Nannobacteria: Size limits and evidence[J].Science,276(5320):1776.
[20]  Mazzullo S J.2000.Organogenic dolomitization in peritidal to deep-sea sediments[J].Journal of Sedimentary Research,70(1):10-23.
[21]  Mazzullo S J,Bischoff W D,Teal C S.1995.Holocene shallow subtidal dolomitization by near normal seawater,northern Belize[J].Geology,23: 341-344.
[22]  Meister P,Mckenzie J A,Vasconcelos C, et al.2007.Dolomite formation in the dynamic deep biosphere: Results from the Peru Margin[J].Sedimentology,54: 1007-1031.
[23]  Meister P,Gutjahr M,Frank M, et al.2011.Dolomite formation within the methanogenic zone induced by tectonically driven fluids in the Peru accretionary prism[J].Geology,39: 563-566.
[24]  Perri E,Tucker M.2007.Bacterial fossils and microbial dolomite in Triassic stromatolites[J].Geology,35(3):207-210.
[25]  Roberts J A,Bennett P C,Gonzlez L A, et al. 2004.Microbial precipitation of dolomite in methanogenic groundwater[J].Geology,32(4):277-280.
[26]  Snchez-Romn M,McKenzie J A,de Luca Rebello Wagener A, et al.2009a.Presence of sulfate does not inhibit low-temperature dolomite precipitation[J].Earth and Planetary Science Letters,285:131-139.
[27]  Snchez-Romn M,Romanek C S,Fernndez-Remolar D C, et al.2011.Aerobic biomineralization of Mg-rich carbonates: Implications for natural environments[J].Chemical Geology,281:143-150.
[28]  Snchez-Romn M,Vasconcelos C,Schmid T, et al.2008.Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record[J].Geology,36(11):879-882.
[29]  Snchez-Romn M,Vasconcelos C,Warthmann R, et al. 2009b.Microbial dolomite precipitation under aerobic conditions: Results from Brejo do Espinho Lagoon(Brazil)and culture experiments[C].In: Swart P K,Eberli G P,McKenzie J A(eds).Perspectives in Sedimentary Geology: A Tribute to the Career of Robert Nathan Ginsburg,IAS Special Publication,41:167-178.
[30]  Tracy S L,Franois C J P,Jennings H M.1998a. The growth of calcite spherulites from solution I.Experimental design techniques[J]. Journal of Crystal Growth,193:374-381.
[31]  Tracy S L,Franois C J P,Jennings H M.1998b. The growth of calcite spherulites from solution Ⅱ.Kinetics of formation [J]. Journal of Crystal Growth,193: 381-388.
[32]  van Lith Y,Warthmann R,Vasconcelos C,et al.2003.Microbial fossilization in carbonate sediments: A result of the bacterial surface involvement in dolomite precipitation[J].Sedimentology,50:237-245.
[33]  Vasconcelos C,McKenzie J A.1997.Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions(Lagoa Vermelha,Riode Janeiro,Brazil)[J].Journal of Sedimentary Research,67(3):378-390.
[34]  Vasconcelos C,McKenzie J A,Bernasconi S, et al.1995.Microbial mediation as a possible mechanism for natural dolomite formation at low temperature[J].Nature,377(6546):220-222.
[35]  Wacey D.2007.A stable isotope study of microbial dolomite formation in the Coorong Region,South Australia[J].Chemical Geology,244:155-174.
[36]  Warthmann R,van Lith Y,Vasconcelos C, et al.2000.Bacterially induced dolomite precipitation in anoxic culture experiments[J].Geology,28(12):1091-1094.
[37]  Warthmann R,Vasconcelos C,Sass H, et al.2005.Desulfovibrio brasiliensis sp.nov.,a moderate halophilic sulfate-reducing bacterium from Lagoa Vermelha(Brazil)mediating dolomite formation[J].Extremephiles,9: 255-261.
[38]  Whiticar M J.1999.Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J].Chemical Geology,161:291-314.
[39]  William D R,Silverman S R.1965.Carbon isotope fractionation in bacterial production of methane[J].Science,130:1658-1659.
[40]  Wright D T.1999.The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region,South Australia[J].Sedimentary Geology,126:147-157.
[41]  Wright V P.1992.A revised classification of limestones[J].Sedimentary Geology,76: 177-185.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133