全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

陆生植被对河流沉积作用的影响:生物沉积作用研究的一个重要主题*

DOI: 10.7605/gdlxb.2013.01.001, PP. 1-10

Keywords: 陆生植被,植被阶段,关键事件,河流沉积作用

Full-Text   Cite this paper   Add to My Lib

Abstract:

河流是大陆景观最为动态化的地貌构成单元,地质学家经过长期的研究,得出了一个引人注目的假说,即古生代中期曲流河的显著发育与陆生植被的繁盛存在紧密的联系,从而导致了在陆生植被对河流沉积作用影响方面的深入研究。尽管还存在一些不同的认识和争论,陆生植被对河流沉积作用的影响,得到了越来越多的地质事实的支持。立足于前人的研究成果,从陆生植被阶段的划分以及植物在古生代早中期关键的演变事件入手,介绍植被的起源和演化与河流沉积作用尤其是河流样式演变之间的耦合关系。厘清上述科学理念的变化和进步,将有助于河流相沉积的正确解释,从而为现代和古代河流过程的进一步研究提供重要的思考线索和研究途径。更为重要的是,在地球历史长河之中,有胚植物(陆生植物)在陆生大陆景观上的古生代繁殖是最为壮观的变化之一,由此而造成的全球变化包括:(1)由于岩石风化作用和碳储存的增强,将造成的大气圈二氧化碳含量的降低;(2)晚古生代冰川作用;(3)陆生营养物径流量的增加与海洋生物的灭绝事件之间的联系等。所以,陆生植被的起源与演化对河流沉积作用的影响,就成为生物沉积作用研究的一个重要主题。

References

[1]  Davies N S,Gibling M R.2010b.Paleozoic vegetation and the Siluro-Devonian rise of fluvial lateral accretion sets[J].Geology,38: 51-54.
[2]  Dott Jr R H,Byers C W.1981.SEPM research conference on modern shelf and ancient cratonic sedimentation: The orthoquartzite-carbonate suite revisited[J].Journal of Sedimentary Petrology,51: 329-347.
[3]  Driese S G,Mora C Ⅰ.2001.Diversification of Siluro-Devonian plant traces in paleosols and influence on estimates of paleoatmospheric CO2 levels[C].In: Gensel P G,Edwards D(eds).Plants Invade the Land.New York: Columbia University Press,237-253.
[4]  Driese S G,Medaris Jr L G,Ren M, et al.2007.Differentiating pedogenesis from diagenesis paleoweathering surfaces formed on granitic composition parent materials[J].Journal of Geology, 115:387-406.
[5]  Fuller A O.1985.A contribution to the conceptual modelling of pre-Devonian fluvial systems[J].Transactions Geological Society of South Africa,88: 189-194.
[6]  Gensel P G.2008.The earliest land plants[J].Annual Review of Ecology,Evolution,and Systematics,39: 459-477.
[7]  Gensel P G,Kotyk M E,Basinger J F.2001.Morphology of above-and below-ground structures in Early Devonian(Pragian-Emsian)Plants[C].In: Gensel P G,Edwards D(eds).Plants Invade the Land: Evolutionary and Environmental Perspectives.New York: Columbia University Press,83-102.
[8]  Gibling M R.2006.Width and thickness of fluvial channel bodies and valley fills in the geological record: A literature compilation and classiflcation[J].Journal of Sedimentary Research,76: 731-770.
[9]  Glasspool I J,Edwards D,Axe L.2004.Charcoal in the Silurian as evidence for the earliest wildfire[J].Geology,33: 589-592.
[10]  Glasspool I J,Edwards D,Axe L.2006.Charcoal in the Early Devonian: A wildfire-preserved Konservat-Lagerstatte[J].Review of Palaeobotany and Palynology,142: 131-136.
[11]  Godderis Y,Joachimski M M.2004.Global change in the Late Devonian: Modeling the Frasnian-Famennian short-term carbon isotope excursions[J].Palaeogeography,Palaeoclimatology,Palaeoecology,202: 309-329.
[12]  Gradziński R,Baryfia J,Doktor M, et al.2003.Vegetation-controlled modern anastomosing system of the upper Narew River(NE Poland)and its sediments[J]. Sedimentary Geology,157: 253-276.
[13]  Hernick L V, Landing E, Bartowski I. 2008. Earth's oldest liverworts:Metzgeriothallus sharonae sp. nov. from the Middle Devonian(Givetian) of eastern New York, USA[J]. Review of Palaeobotany, 148:154-162.
[14]  Hillier R D,Edwards D,Morrissey L B.2008.Sedimentological evidence for rooting structures in the Early Devonian Anglo-Welsh Basin(UK),with speculation on their producers[J].Palaeogeography,Palaeoclimatology,Palaeoecology,270: 366-388.
[15]  Horodyski R J,Knauth L P.1994.Life on land in the Precambrian[J].Science,263: 494-498.
[16]  Jones C G,Lawton J H,Shachak M.1994.Organisms as ecosystem engineers[J].Oikos,69: 373-386.
[17]  Kennedy M,Droser M,Mayer L M, et al.2006.Late Precambrian oxygenation: Inception of the clay mineral factory[J].Science,311: 1446-1449.
[18]  Labandeira C C.2005.Invasion of the continents: Cyanobacterial crusts to tree-inhabiting arthropods[J].Trends in Ecology and Evolution,20: 253-262.
[19]  Long D G F.2004.Precambrian Rivers[C].In: Eriksson P G,Altermann W,Nelson D R, et al(eds).The Precambrian Earth: Tempos and Events.Amsterdam: Elsevier,660-663.
[20]  Long D G F.2006.Architecture of pre-vegetation sandy-braided perennial and ephemeral river deposits in the Paleoproterozoic Athabasca Group,northern Saskatchewan,Canada as indicators of Precambrian fluvial style[J].Sedimentary Geology,190: 71-95.
[21]  MacNaughton R B,Dalrymple R W,Narbonne G M.1997.Early Cambrian braid-delta deposits,MacKenzie Mountains,north-western Canada[J].Sedimentology,44: 587-609.
[22]  Makaske B.2001.Anastomosing rivers: A review of their classification,origin and sedimentary products[J].Earth-Science Reviews,53: 149-196.
[23]  Malkowski K,Racki G.2009.A global biogeochemical perturbation across the Silurian-Devonian boundary: Ocean-continent-biosphere feedbacks[J].Palaeogeography,Palaeoclimatology,Palaeoecology,276: 244-254.
[24]  McCourt R M,Delwiche C F,Karol K G.2004.Charophyte algae and land plant origins[J].Trends in Ecology and Evolution,19: 661-666.
[25]  Murray A B,Knaapen M A F,Tal M, et al.2008.Biomorphodynamics: Physical-biological feedbacks that shape landscapes[J].Water Resources Research,44: 11301-11306.
[26]  Noffke N.2009.The criteria for the biogeneicity of microbially induced sedimentary structures(MISS)in Archean and younger,sandy deposits[J].Earth-Science Reviews,96: 173-180.
[27]  Noffke N.2010.Geobiology: Microbial Mats in Sandy Deposits from the Archean Era to Today[M].Berlin: Springer-Verlag,1-194.
[28]  Pflüger F.1999.Matground structures and redox facies[J].Palaios,14: 25-39.
[29]  Porada H,Bouougri E H.2007.Wrinkle structures: A critical review[J].Earth-Science Reviews,81: 199-215.
[30]  Raven J A,Edwards D.2001.Roots: Evolutionary origins and biogeochemical significance[J].Journal of Experimental Botany,52: 381-401.
[31]  Redecker D,Kodner R,Graham L E.2000.Glomalean Fungi from the Ordovician[J].Science,289: 1920-1921.
[32]  Retallack G J.2001.Soils of the Past(Second Edition)[M].Oxford: Blackwell Science,1-404.
[33]  Retallack G J.2005.Earliest Triassic claystone breccias and soil-erosion crisis[J].Journal of Sedimentary Research,75: 679-695.
[34]  Richardson J B.1996.Lower and Middle Palaeozoic records of terrestrial palynomorphs[C].In: Jansonius J,McGregor D C(eds).Palynology: Principles and Applications: Applications,American Association of Stratigraphic Palynologists Foundation,2: 555-574.
[35]  Robinson J.M,Berner R A.1991.Land plants and weathering[J].Science,252: 860-864.
[36]  Sanderson M J.2003.Molecular data from 27 proteins do not support a Precambrian origin of land plants[J].American Journal of Botany,90: 954-956.
[37]  Sarkar S,Banerjee S,Eriksson P G, et al.2005.Microbial mat control on siliciclastic Precambrian sequence stratigraphic architecture: Examples from India[J].Sedimentary Geology,176: 191-205.
[38]  Schieber J.1998.Possible indicators of microbial mat deposits in shales and sandstones: Examples from the Mid-Proterozoic Belt Supergroup,Montana,USA[J].Sedimentary Geology,120: 105-124.
[39]  Schieber J.2004.Microbial mats in the siliclastic rock record: A summary of diagnostic features[C].In: Errickson P G,Alterman W,Nelson D R, et al (eds).The Precambrian Earth: Tempos and Events.Amsterdam: Elsevier,663-673.
[40]  Schieber J,Bose P K,Eriksson P G, et al.2007.Atlas of Microbial Mat Features Preserved Within the Siliclastic Rock Record[M].Amsterdam: Elsevier,1-313.
[41]  Schumm S A.1968.Speculations concerning paleohydraulic controls of terrestrial sedimentation[J].Geological Society of America Bulletin,79: 1573-1588.
[42]  Steemans P.2000.Miospore evolution from the Ordovician to the Silurian[J].Review of Palaeobotany and Palynology,113: 189-196.
[43]  Steemans P,Le Hérissé A,Melvin J, et al.2009.Origin and radiation of the earliest vascular land plants[J].Science,324: 353.
[44]  Stein W E,Mannolini F,Hernick L V, et al.2007.Giant cladoxylopsid trees resolve the enigma of the Earth's earliest fossil stumps at Gilboa[J].Nature,446: 904-907.
[45]  Strother P K.2000.Cryptospores: The origin and early evolution of the terrestrial flora[C].In: Gastaldo R A,DiMichele W A(eds).Phanerozoic Terrestrial Ecosystems.London: Paleontological Society,3-20.
[46]  Tal M,Paola C.2007.Dynamic single-thread channels maintained by the interaction of flow and vegetation[J].Geology,35:347-350.
[47]  Taylor W A,Strother,P K.2008.Ultrastructure of some Cambrian palynomorphs from the Bright Angel Shale,Arizona,USA[J].Review of Palaeobotany and Palynology,151: 41-50.
[48]  Taylor W A,Strother P K.2009.Ultrastructure,morphology,and topology of Cambrian palynomorphs from the Lone Rock Formation,Wisconsin,USA[J].Review of Palaeobotany and Palynology,153: 296-309.
[49]  Thomas R G,Williams B P J,Morrissey L B, et al.2006.Enigma variations: The stratigraphy,provenance,palaeoseismicity and depositional history of the Lower Old Red Sandstone Cosheston Group,south Pembrokeshire,Wales[J].Geological Journal,41: 481-536.
[50]  Tomescu A M F,Rothwell G W,Honegger R.2006.Cyanobacterial macrophytes in an Early Silurian(Llandovery)continental biota: Passage Creek,lower Massanutten Sandstone,Virginia,USA[J].Lethaia, 39:329-338.
[51]  Veizer J,Godderis Y,Francois L M.2000.Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon[J].Nature,408: 698-701.
[52]  Viles H A,Naylor L A,Carter N E A, et al.2008.Biogeomorphological disturbance regimes: Progress in linking ecological and geomorphological systems[J]. Earth Surface Processes and Landforms,33: 1419-1435.
[53]  Wellman C H,Gray J.2000.The microfossil record of early land plants[J].Philosophical Transactions of the Royal Society of London,Series B(Biological Sciences),355: 717-731.
[54]  Wellman C H,Osterloff P L,Mohiuddin U.2003.Fragments of the earliest land plants[J].Nature, 425:282-285.
[55]  Wood L J.2006,Quantitative geomorphology of the Mars Eberswalde delta[J]. Geological Society of America Bulletin,118: 557-566.
[56]  梅冥相.2011a.陆源碎屑岩中微生物诱发的沉积构造的成因类型及其分类体系[J].地质论评,57(3):419-436.
[57]  梅冥相.2011b.微生物席沉积学: 一个年轻的沉积学分支[J].地球科学进展,26(6):586-597.
[58]  梅冥相,孟庆芬,刘智荣.2007.微生物形成的原生沉积构造研究进展综述[J].古地理学报,9(4):353-367.
[59]  梅冥相,高金汉,孟庆芬,等.2009.前寒武纪与微生物席相关的粉砂岩岩墙:以天津蓟县古元古界串岭沟组为例[J].古地理学报,11(1):37-50.
[60]  史晓颖,王新强,蒋干清,等.2008.贺兰山地区中元古代微生物席成因构造: 远古时期微生物群活动的沉积标示[J].地质论评,54(5):577-586.
[61]  Algeo T J,Scheckler S E.1998.Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants,weathering processes,and marine anoxic events[J].Philosophical Transactions of the Royal Society of London,B 353: 113-130.
[62]  Algeo T J,Scheckler S E,Maynard J B.2001.Effects of the Middle to Late Devonian spread of vascular land plants on weathering regimes,marine biotas,and global climate[C].In: Gensel P G,Edwards D(eds).Plants Invade the Land: Evolutionary and Environmental Perspectives.New York: Columbia University Press,213-236.
[63]  Boucot A J,Gray J.2001.A critique of Phanerozoic climatic models involving changes in the CO2 content of the atmosphere[J].Earth-Science Reviews,56: 1-159.
[64]  Berner R A.1991,A model for atmospheric CO2 over Phanerozoic time[J].American Journal of Science,291: 339-376.
[65]  Berner R A.1994.GEOCARB Ⅱ: A revised model of atmospheric CO2 over Phanerozoic time[J].American Journal of Science,294: 56-91.
[66]  Berner R A.2001.The effect of the rise of land plants on atmospheric CO2 during the Paleozoic[C].In: Gensel P G,Edwards D(eds).Plants Invade the Land.New York: Columbia University Press,173-178.
[67]  Berner R A.2006.GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2[J].Geochimica et Cosmochimica Acta,70: 5653-5664.
[68]  Berner R A,Kothavala Z.2001.GEOCARB Ⅲ: A revised model of atmospheric CO2 over Phanerozoic time[J].American Journal of Science,301: 182-204.
[69]  Berry C M,Fairon-Demaret M.2001.The Middle Devonian Flora revisited[J].In: Gensel P G,Edwards D(eds).Plants Invade the Land: Evolutionary and Environmental Perspectives.New York: Columbia University Press,120-139.
[70]  Bottjer D J.2005.Geobiology and the fossil record: Eukaryotes,microbes,and their interactions[J].Palaeogeography,Palaeoclimatology,Palaeoecology,219: 5-21.
[71]  Bridge J S.2006.Fluvial facies models: Recent developments[C].In: Posamentier H W,Walker R G(eds).Facies Models Revisted.SEPM: Society for Sedimentary Geology,85-170.
[72]  Buatois L A,Mngano M G,Genise J F, et al.1998.Theichnologicrecordof the continental invertebrate invasion: Evolutionary trends in environmental expansion,ecospace utilization,and behavioral complexity[J].Palaios,13: 217-240.
[73]  Corenblit D,Steiger J.2009.Vegetation as a major conductor of geomorphic changes on the Earth surface: Toward evolutionary geomorphology[J].Earth Surface Processes and Landforms,34: 891-896.
[74]  Corenblit D,Steiger J,Gurnell A M, et al.2007.Darwinian origin of landforms[J].Earth Surface Processes and Landforms,32: 2070-2073.
[75]  Cotter E.1978.The evolution of fluvial style,with special reference to the central Appalachian Paleozoic[C].In: Miall A D(ed).Fluvial Sedimentology.Canadian Society of Petroleum Geologists Memoir,5: 361-383.
[76]  Crowley T J,Berner R A.2001.CO2 and climate change[J].Science,289: 270-277.
[77]  Davies N S,Gibling M R.2010a.Cambrian to Devonian evolution of alluvial systems: The sedimentological impact of the earliest land plants[J].Earth-Science Reviews,98: 171-200.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133