全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非常规油气藏的形成及其分布特征*

, PP. 605-614

Keywords: 非常规油气,浮力,异常压力,分布特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

非常规油气领域是目前油气勘探和开发的热点领域,也是石油工业的发展趋向,非常规油气的成藏研究对非常规油气勘探具有重要指导意义。非常规油气与常规油气成藏的最本质区别在于非常规油气是非浮力驱动聚集,这主要是由于致密储集层中微纳米级孔隙发育导致毛细管阻力较大,同时缺乏提供强大浮力的有利条件。根据烃源岩演化与非常规油气成藏的关系,将非常规油气资源分为油页岩、页岩油、致密油、页岩气、致密气和煤层气6种类型。油页岩、页岩油、煤层气和页岩气的源储组合特征都是“源储一体”,而致密油气源储组合有2种类型:一种是源储叠置的临源型致密油气,另一种是与常规油气藏类似的源储不相临、但距离不远的近源型致密油气。成藏动力学上的差异使非常规油气藏在地质上表现为大面积分布、局部富集、油气赋存具有明显的“滞留”或短距运移特征、没有明显的圈闭边界和无统一的油水界面等特点。

References

[1]  戴金星, 裴锡古, 戚厚发. 1992. 中国天然气地质学[M]. 北京:石油工业出版社.
[2]  郝芳, 邹华耀. 2000. 油气成藏动力学及其研究进展[J]. 地学前缘, 7(3):11-21.
[3]  黄第藩, 李晋超, 周翥虹, 等. 1984. 陆相有机质演化和成烃机理[M]. 北京:石油工业出版社.
[4]  李明诚. 2004. 石油与天然气运移[M]. 北京:石油工业出版社.
[5]  李伟, 邹才能, 杨金利, 等. 2010. 四川盆地上三叠统须家河组气藏类型与富集高产主控因素[J]. 沉积学报, 18(5): 1037-1045.
[6]  宋岩, 柳少波, 赵孟军, 等. 2011. 煤层气与常规天然气成藏机理的差异性[J]. 天然气工业, 31(12): 47-53.
[7]  田世澄, 毕研鹏. 2000. 论成藏动力学系统[M]. 北京:地震出版社.
[8]  童晓光. 2012. 非常规油的成因和分布[J]. 石油学报, 33(增刊Ⅰ):20-26.
[9]  张万选, 张厚福. 1981. 石油地质学[M]. 北京:石油工业出版社.
[10]  褚庆忠. 2001. 异常压力形成机制研究综述[J]. 天然气勘探与开发, 24(4): 38-46.
[11]  邹才能, 陶士振, 侯连华. 2011. 非常规油气地质[M]. 北京: 地质出版社.
[12]  Bowker K A. 2007. Barnett Shale gas production, Fort Worth Basin:Issues and discussion[J]. AAPG Bulletin, 91(4): 523-533.
[13]  Clarkson C R, Bustin R M. 2000. Binary gas adsorption/desorption isotherms: Effect of moisture and coal composition upon carbon dioxide selectivity over methane[J]. International Journal of Coal Geology, 42(4): 241-271.
[14]  Cole R, Cumella S. 2003. Stratigraphic architecture and reservoir characteristics of the Mesaverde Group, southern Piceance Basin, Colorado[C]. In: Peterson K M, Olson T M, Anderson D S(eds). Piceance Basin 2003 Guidebook, Denver, RMAG:385-442.
[15]  Curtis J B. 2002. Fractured shale-gas systems[J]. AAPG Bulletin, 86(11): 1921-1938.
[16]  Curtis M, Ambrose R, Sondergeld C, et al. 2010. Structural characterization of gas shales on the micro-and nano-scales[C]. In: Canadian Unconventional Resources and International Petroleum Conference.
[17]  Davis R W. 1987. Analysis of hydrodynamic factors in petroleum migration and entrapment[J]. AAPG Bulletin, 71(6): 643-649.
[18]  Hildenbrand A, Urai J L. 2003. Investigation of the morphology of pore space in mudstones: First results[J]. Marine and Petroleum Geology, 20(10): 1185-1200.
[19]  Holditch S A. 2003. The increasing role of unconventional reservoirs in the future of the oil and gas business[J]. Journal of Petroleum Technology, 55(11): 34-37.
[20]  Katsube T J, Williamson M A. 1994. Effects of diagenesis on shale nano-pore structure and implications for sealing capacity[J]. Clay Minerals, 29(4): 451-472.
[21]  Kinley T J, Cook L W, Breyer J A, et al. 2008. Hydrocarbon potential of the Barnett Shale(Mississippian)Delaware Basin, West Texas and Southeastern New Mexico[J]. AAPG Bulletin, 92(8): 967-991.
[22]  Law B E, Curtis J B. 2002. Introduction to unconventional petroleum systems[J]. AAPG Bulletin, 86(11): 1851-1852.
[23]  Laxminarayana C, Crosdale P J. 1999. Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals[J]. International Journal of Coal Geology, 40(4): 309-325.
[24]  Li Xinjing, Hu Suyun, Cheng Keming. 2007. Suggestions from the development of fractured shale gas in North America[J]. Petroleum Exploration and Development, 34(4): 392-400.
[25]  Loucks R G, Reed R M, Ruppel S C, et al. 2009. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 79(12): 848-861.
[26]  Martini A M, Walter L M, Tim C W Ku, et al. 2003. Microbial production and modification of gases in sedimentary basins: A geochemical case study from a Devonian shale gas play, Michigan basin[J]. AAPG Bulletin, 87(8): 1355-1375.
[27]  Masters J A. 1979. Deep basin gas trap, West Canada[J]. AAPG Bulletin, 63(2): 152-181.
[28]  Nelson P H. 2009. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 93(3): 329-340.
[29]  Passey Q R, Bohacs K, Klimentidis R E, et al. 2011. My source rock is now my shale-gas reservoir-characterization of organic-rich rocks[C]. AAPG Annual Convention, April 10-13, Houston, Texas.
[30]  Schmoker J W. 2005. US Geological Survey assessment concepts for continuous petroleum accumulations[EB/OL]. US Geological Survey Digital Data Series.
[31]  Schowalter T T. 1979. Mechanics of secondary hydrocarbon migration and entrapment[J]. AAPG Bulletin, 63(5): 723-760.
[32]  Shanley K W. 2004. Fluvial reservoir description for a giant, low-permeability gas field: Jonah field, Green River Basin, Wyoming, USA[C]. In: Robinson J W, Shanley K W(eds). Jonah Field: Case Study of a Tight-gas Fluvial Reservoir. AAPG Studies in Geology, 52:159-182.
[33]  Su X B, Lin X Y, Zhao M J, et al. 2005. The Upper Paleozoic coalbed methane system in the Qinshui Basin, China[J]. AAPG Bulletin, 89(1): 81-100.
[34]  Tissot B P, Welte D H. 1978. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration[M]. New York: Springer-Verlag.
[35]  Vavra C L, Kaldi J G, Sneider R M. 1992. Geological applications of capillary pressure: A review[J]. AAPG Bulletin, 76(6): 840-850.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133