全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非常规油气致密储集层微观结构研究进展*

, PP. 615-623

Keywords: 非常规油气储集层,微观孔喉表征,孔喉演化,油气赋存状态

Full-Text   Cite this paper   Add to My Lib

Abstract:

致密储集层储集性能差,孔喉以纳米级为主,孔喉连通复杂。中国南方高过成熟海相页岩有机质纳米孔与粒内孔大小约为20~890nm;陆相泥页岩孔喉类型为有机质孔与基质孔,主体介于30~200nm之间;致密砂岩微米级孔喉为粒间溶孔、颗粒溶蚀孔与微裂缝,主体介于10~200μm之间,纳米级孔隙大小介于70~400nm之间,以原生粒间孔与自生矿物晶间孔为主;致密灰岩孔喉类型有方解石粒内溶孔、粒间溶孔与微裂缝,大小介于50~500nm之间。页岩微孔喉总体随热演化程度增高呈先减少后增加趋势,致密含油砂岩中油气赋存有4种状态,粒间微孔为油气赋存最有利位置。针对非常规油气储集层独特特征,仍需在仪器研发、技术方法与评价参数等方面加强研究探索。

References

[1]  白斌, 朱如凯, 吴松涛, 等. 2013. 利用多尺度CT成像表征致密砂岩微观孔喉结构[J]. 石油勘探与开发, 2013, 40(3): 329-333.
[2]  崔景伟, 邹才能, 朱如凯, 等. 2012. 页岩孔隙研究新进展[J]. 地球科学进展, 27(12): 1319-1325.
[3]  樊中海. 2008. 扇三角洲体系储集层识别及精细构成研究:以泌阳凹陷赵凹油田为例[M]. 湖北:武汉:中国地质大学出版社.
[4]  邹才能, 朱如凯, 白斌, 等. 2011. 中国油气储集层中纳米孔首次发现及其科学价值[J]. 岩石学报, 27(6): 1857-1864.
[5]  邹才能, 朱如凯, 吴松涛, 等. 2012. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例[J]. 石油学报, 33(2): 173-187.
[6]  Ambrose R, Hartman R, Diaz-Campos M, et al. 2012. Shale Gas-in-Place Calculations Part Ⅰ: New Pore-Scale Considerations[J]. SPE Journal, 17(1): 219-229.
[7]  Brown M, Ozkan E, Raghavan R, et al. 2009. Practical solutions for pressure transient responses of fractured horizontal wells in unconventional reservoirs[C]. SPE Annual Technical Conference and Exhibition.
[8]  Curtis M E, Amobrose R J, Sondergeld C H, et al. 2010. Structural Characterization of Gas Shales on the Micro-and Nano-Scales[C]. Canadian Unconventional Resources and International Petroleum Conference, Calgary, Alberta, Canada.
[9]  Curtis M, Ambrose R, Sondergeld C, et al. 2011. Transmission and scanning electron microscopy investigation of pore connectivity of gas shales on the nanoscale[C]. North American Unconventional Gas Conference and Exhibition.
[10]  Desbois G, Urai J L, Kukla P A. 2009. Morphology of the pore space in claystones-evidence from BIB/FIB ion beam sectioning and cryo-SEM observations: Earth, 4: 15-22.
[11]  Desbois G, Enzmann F, Urai J L, et al. 2010. Imaging pore space in tight gas sandstone reservoir: Insights from broad ion beam cross-sectioning[C]. EPJ Web of conferences 6, 22022
[12]  Fishman N S, Hackley P C, Lowers H A, et al. 2013. The nature of porosity in organic rich mudstones of Upper Jurassic Kimmeridge clay formation, North Sea, offshore United Kingdom[J]. International Journal of Coal Geology. 103:32-50.
[13]  Etherington J, Aguilera R. 2012. Using the SPE/WPC/AAPG/SPEE/SEG PRMS To Evaluate Unconventional Resources[J]. SPE Economics & Management, 4(2): 119-127.
[14]  Gouth F, Galliero G, Wang J, et al. 2013. Molecular Simulation To Determine Key Shale Gas Parameters, And Their Use In A Commercial Simulator For Production Forecasting[C]. 75th EAGE Conference & Exhibition incorporating SPE Europe.
[15]  Haskett W, Brown P. 2005. Evaluation of unconventional resource plays[C]. SPE Annual Technical Conference and Exhibition.
[16]  Holditch S. 2006. Tight gas sands[J]. Journal of Petroleum Technology, 58(6): 86-93.
[17]  Hover V C, Peacor D R, Walter L M. 1996. STEM/AEM evidence for preservation of burial diagenetic fabrics in Devonian shales: Implications for fluid/rock interaction in cratonic basins(USA)[J]. Journal of Sedimentary Research, 66(3): 519-530.
[18]  Klaver J, Desbois G, Urai J L, et al. 2013. FIB-SEM study of the pore space morphology in early mature Posidonia shale from the Hils area, Germany[J]. International Journal of Coal Geology, 103: 12-25.
[19]  Loucks R G, Reed R M, Ruppel S C. 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 96(6): 1071-1098.
[20]  Lu J, Milliken K, Reed R M, et al. 2011. Diagenesis and sealing capacity of the middle Tuscaloosa mudstone at the Cranfield carbon dioxide injection site, Mississippi, USA[J]. Environmental Geosciences, 18(1): 35-53.
[21]  Milner M, McLin R, Petriello J. 2010. Imaging texture and porosity in mudstones and shales: Comparison of secondary and ion milled backscatter SEM methods in Canadian Unconventional Resources & International Petroleum Conference, Calgary, Alberta, Canada. Canadian Society for Unconventional Gas, October, CUSG/SSPE 138975: 10
[22]  Murphy M, Daniels J, Cole D, et al. 2012. Pore Distribution in the Ordovician Shale of the Utica/Point Pleasant Sub-Basin[C]. AAPG annual convention & exhibition;abstracts volume.
[23]  Nelson P H. 2009. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 93(3): 329-340.
[24]  Schieber J. 2010. Common themes in the formation and preservation of porosity in shales and mudstones-illustrated with examples across the Phanerozoic, in Proceedings, SPE Unconventional Gas Conference, Pittsburgh, Pennsylvania, 23-25 February:12.
[25]  Schmoker J W, Fouch T D, Charpentier R R. 1996. Gas in the Uinta Basin, Utah-resouces in continous accumulations[J]. Mountain Geology, 33(4): 95-104.
[26]  Slatt R M, OBrien N R. 2011. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 95(12): 2017-2030.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133