全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

砂岩侵入体系物理模拟实验

DOI: 10.7605/gdlxb.2014.05.49, PP. 605-612

Keywords: 砂火山,形成机理,物理模拟,切片,模型重构,砂岩侵入体系

Full-Text   Cite this paper   Add to My Lib

Abstract:

近十年来,从露头、地震、岩心和测井曲线等资料中识别出了越来越多的砂岩侵入体。这些砂岩侵入体对油气勘探和开发既有正面影响,也有负面影响,但由于其发育过程和分布的复杂性,使得对于其成因机制和形成过程探讨较少。笔者建立了一套模拟砂岩侵入体系的实验装置,并设计了完整的实验程序,以模拟砂岩侵入体的形成过程,并探索其形成机理。在此基础上,进行了5组实验,分析了顶层沉积物厚度和进水管结构对砂岩侵入体形成的影响。通过对实验结果进行冷冻、切片和照相,将砂岩侵入体的形成过程分为5个阶段,并借助软件对每次实验的模型进行了三维重构,以期为更好地分析砂岩侵入体系的形成机理提供实验基础。

References

[1]  李勇,钟建华,邵珠福,等. 2012. 软沉积变形构造的分类和形成机制研究[J]. 地质论评,58(5):829-838.
[2]  Braccini E,Boer W D,Hurst A, et al. 2008. 砂岩贯入体[J]. 油田新技术,(2):34-49.
[3]  Cobbold P R,Rodrigues N. 2007. Seepage forces,important factors in the formation of horizontal hydraulic fractures and bedding-parallel fibrous veins(“beef”and“cone-in-cone”)[J]. Geofluids,7:313-332.
[4]  Glennie K W,Hurst A. 2007. Fluidisation and associated soft-sediment deformation in aeolian sandstones:Hopeman Sandstone(Permian),Scotland,and Rotliegend,North Sea[A]. In:Hurst A, Cartwright J(eds). Sand Injectites:Implications for Hydrocarbon Exploration and Production[C]. AAPG Memoir,87:221-226.
[5]  Fernandes L A,Bonatto de Castro A,Basilici G. 2007. Seismites in continental sand sea deposits of the Late Cretaceous Caiva′Desert,Bauru Basin,Brazil[J]. Sedimentary Geology,199:51-64.
[6]  Frey S E,Gingras M K,Dashtgard S E. 2009. Experimental studies of gas-escape and water-escape structures:Mechanisms and morphologies[J]. Journal of Sedimentary Research,79:808-816.
[7]  Hurst A,Cartwright J. 2007. Relevance of sand injectites to hydrocarbon exploration and production[A]. In:Hurst A, Cartwright J(eds). Sand injectites:Implications for Hydrocarbon Exploration and Production[C]. AAPG Memoir,87:1-19.
[8]  Hurst A,Scott A,Vigorito M. 2011. Physical characteristics of sand injectites[J]. Earth Science Reviews,106:215-246.
[9]  Lowe D R. 1975. Water escape structures in coarse-grained sediments[J]. Sedimentology,22:157-204.
[10]  Mrz T,Karlik E A,Kreiter S, et al. 2007. An experimental setup for fluid venting in unconsolidated sediments:New insights to fluid mechanics and structures[J]. Sedimentary Geology,196:251-267.
[11]  Myers G,Winkler C,Dugna B, et al. 2007. Ursa basin explores shine new light on shallow water flow[J]. Offshore Engineer,9:88-93.
[12]  Netoff D. 2002. Seismogenically induced fluidization of Jurassic erg sands,south-central Utah[J]. Sedimentology,49:64-80.
[13]  Nichols R J,Sparks R S,Wilson C J N. 1994. Experimental studies of the fluidization of layered sediments and the formation of fluid escape structures[J]. Sedimentology,41:233-253.
[14]  Owen G,Moretti M,Alfaro P. 2011. Recognizing triggers for soft-sediment deformation:Current understanding and future directions[J]. Sedimentary Geology,235(3):133-140.
[15]  Pralle N,Kulzer M,Gudehus G. 2003. Experimental evidence on the role of gas in sediment liquefaction and mud volcanism[A]. In:Rensbergen V,Hillis R R,Maltman A J, et al(eds). Subsurface Sediment Mobilization[M]. Geology Society London Special Publishment,216:159-171.
[16]  Rodrigues N,Cobbold P R,Lseth H. 2009. Physical modelling of sand injectites[J]. Tectonophysics,474:610-632.
[17]  Rodr′guez-Lo′pez J P,Mele′ndez N,de Boer P L, et al. 2008. Aeolian sand sea development along the mid-Cretaceous western Tethyan margin(Spain):Erg sedimentology and palaeoclimate implications[J]. Sedimentology,55:1253-1292.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133