全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

长江三峡地区成冰纪—埃迪卡拉纪转换时期微量元素和稀土元素地球化学特征

DOI: 10.7605/gdlxb.2014.04.040, PP. 483-502

Keywords: 三峡地区,南沱组,陡山沱组,转换时期,元素地球化学

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过微量元素和稀土元素地球化学分析,对长江三峡地区陡山沱组层型剖面——田家园子剖面成冰系南沱组顶部和埃迪卡拉系陡山沱组下部102个岩石样品进行了地球化学研究。重点分析了氧化还原敏感元素(Zn,Co,U,Mo,Ni,V)的富集特征,并探讨其可能成因机制以及三峡地区成冰纪—埃迪卡拉纪转换时期的水体特征。结果表明:在南沱组顶部仅Zn和Co富集;在盖帽白云岩下部,氧化还原敏感元素均富集,而在盖帽白云岩上部,除Zn和V外,其他氧化还原敏感元素均亏损;在陡山沱组Ⅱ段下部,氧化还原敏感元素由最初的亏损,逐渐变为较稳定的富集。在陡山沱组下部,出现2次明显的富集峰值,分别出现在剖面的0.4m处(盖帽白云岩中间)和6.5m处(陡山沱组Ⅱ段下部)。整个剖面大部分样品具有Eu的轻微正异常(Eu/Eu*<1.6),而在剖面0.4m和6.5m处,Eu具有明显的正异常,结合稀土配分类型、Y/Ho值、La异常、Ce异常等指标,推测这2次异常均可能受到深海热液流的影响,而缺氧海水的上涌造成水体缺氧,导致这些元素出现富集峰值。U/Th、V/(V+Ni)以及稀土元素指标综合指示,三峡地区南沱组顶部冰碛岩应为氧化环境下的沉积物;随着冰川消融,冰融淡水注入古海洋,陡山沱组盖帽碳酸盐的沉积受冰融淡水的影响,深部缺氧海水的上涌使沉积水体经历氧化—缺氧—氧化的转变,海水的分层性较强;而陡山沱组Ⅱ段下部沉积环境以分层性较弱的弱氧化环境为主。

References

[1]  常华进,储雪蕾,冯连君,等. 2009. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评,55(1):91-99.
[2]  丁振举,刘丛强,姚书振,等. 2000. 海底热液系统高温流体的稀土元素组成及其控制因素[J]. 地球科学进展,15(3):68-73.
[3]  胡古月,范昌福,万德芳,等. 2013. 湖北峡东地区“盖帽碳酸盐岩”中燧石条带的地球化学特征及其古环境意义[J]. 地质学报,87(9):1469-1476.
[4]  黄晶,储雪蕾,常华进,等. 2009. 三峡地区埃迪卡拉系陡山沱组帽碳酸盐岩的微量元素和稀土元素研究[J]. 科学通报,54(22):3498-3506.
[5]  蒋干清,史晓颖,张世红. 2006. 甲烷渗漏构造、水合物分解释放与新元古代冰后期盖帽碳酸盐岩[J]. 科学通报,51(10):3-20.
[6]  李忠雄,陆永潮,王剑,等. 2004. 中扬子地区晚震旦世—早寒武世沉积特征及岩相古地理[J]. 古地理学报,6(2):29-40.
[7]  刘鹏举,尹崇玉,陈寿铭,等. 2012. 华南峡东地区埃迪卡拉(震旦)纪年代地层划分初探[J]. 地质学报,86(6):849-866.
[8]  密文天,李德亮,范昱. 2011. 湖北宜昌白果园陡山沱组磷块岩地球化学特征研究[J]. 地质与勘探,47(6):982-993.
[9]  王新强,史晓颖. 2010. 华南伊迪卡拉纪碳同位素时空变化及其对生物演化的影响[J]. 中国科学:地球科学,40(1):18-27.
[10]  邢裕盛,刘桂芝,乔秀夫,等. 1982. 中国的上前寒武系[A]. 见:中国地质科学院主编. 中国地层概论[M]. 北京:地质出版社,47-81.
[11]  闫斌,朱祥坤,唐索寒,等. 2010. 三峡地区陡山沱早期水体性质的稀土元素和锶同位素制约[J]. 现代地质,24(5):832-839.
[12]  杨振强,陈开旭,金光富,等. 1996. 湖北兴山发现晚元古代灾变事件的证据: 微球粒和碳同位素负异常[J]. 中国区域地质,(1):83-87.
[13]  杨振强,陈开旭,金光富,等. 1994. 地球灾变事件、热水沉积和有机质富集成矿:湖北白果园震旦纪银钒矿床的沉积学[J]. 中国地质科学院宜昌地质矿产所所刊,93-94.
[14]  尹崇玉,刘鹏举,陈寿铭,等. 2009. 峡东地区埃迪卡拉系陡山沱组疑源类生物地层序列[J]. 古生物学报,48(2):146-154.
[15]  雍自权,张旋,邓海波,等. 2012. 鄂西地区陡山沱组页岩段有机质富集的差异性[J]. 成都理工大学学报(自然科学版),39(6):3-10.
[16]  赵自强,邢裕盛,马国干,等. 1985. 长江三峡地区生物地层学(1)·震旦纪分册[M]. 北京:地质出版社.
[17]  张飞飞,朱祥坤,高兆富,等. 2013. 黔东北西溪堡锰矿的沉淀形式与含锰层位中黄铁矿异常高 δ34S 值的成因[J]. 地质论评,59(2):274-286.
[18]  郑文忠,东野脉兴,胡珞兰. 1992. 鄂西震旦纪陡山沱组磷块岩稀土元素地球化学[J]. 地质论评,38(4):352-359.
[19]  Alibo D S,Nozaki Y. 1999. Rare earth elements in seawater:Particle association,shale-normalization,and Ce oxidation[J]. Geochimica et Cosmochimica Acta,63:363-372.
[20]  Bau M,Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations,Teansvaal Supergroup,South Africa[J]. Precambrian Research,79:37-55.
[21]  Bolhar R,Van Kranendonk M J. 2007. A non-marine depositional setting for the northern Fortescue Group,Pilbara Craton,inferred from trace element geochemistry of stromatolitic carbonates[J]. Precambrian Research,155:229-250.
[22]  Brookins D G. 1989. Aqueous geochemistry of rare earth elements[A]. In: Lipin B R,McKay G A(eds). Geochemistry and Mineralogy of Rare Earth Elements[J]. Reviews of Mineralogy,21:201-225.
[23]  Calvert S E,Pedersen T F. 1993. Geochemistry of recent oxic and anoxic marine sediments:Implications for the geological record[J]. Marine geology,113(1):67-88.
[24]  Chen D F,Dong W Q,Qi L, et al. 2003. Possible REE constraints on the depositional and diagenetic environment of Doushantuo Formation phosphorites containing the earliest metazoan fauna[J]. Chemical Geology,201:103-118.
[25]  Chu X L,Zhang Q R,Zhang T G, et al. 2003. Sulfur and Carbon isotopic variations in Neoproterozoic sedimentary rocks from southern China[J]. Progress in Natural Science,13(11):875-880.
[26]  Condon D,Zhu M Y,Bowring S, et al. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation,China[J]. Science,308:95-98.
[27]  Dobrzinski N,Bahlburg H,Strauss H. et al. 2004. Geochemical climate proxies applied to the Neoproterozoic glacial succession on the Yangtze Platform,South China[J]. The Extreme Proterozoic:Geology,Geochemistry,and Climate,13-32.
[28]  Guo Q J,Shields G,Liu C Q, et al. 2007. Trace element chemostratigraphy of two Edicaran-Cambrian sussessions in South China:Implications for organosedimentary metal enrichment and silicification in the early Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,254:194-216.
[29]  Hatch J R,Leventhal J S. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian)Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,U.S.A.[J]. Chemical Geology,99:65-82.
[30]  Hoffman P F,Kaufman A J,Halverson G P, et al. 1998. A Neoproterozoic snowball Earth[J]. Science,281:1342-1346.
[31]  Hoffman P F,Schrag D P. 2002. The snowball Earth hypothesis:Testing the limits of global change[J]. Terra Nova,14:129-155.
[32]  Hoffmann K H,Condon D J,Bowring S A, et al. 2004. U-Pb zircon date from the Neoproterozoic Ghaub Formation,Namibia:Constraintson Marinoan glaciation[J]. Geology,32:817-820.
[33]  Huang J,Chu X L,Jiang S Y, et al. 2011. Hydrothermal origin of elevated iron,manganese and redox-sensitive trace elements in the c. 635Ma Doushantuo cap carbonate[J]. Journal of the Geological Society,London,168:805-815.
[34]  Jiang G Q,Shi X Y,Zhang S H, et al. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation(ca.635-551Ma)in South China[J]. Gondwana Research,19(4):831-849.
[35]  Jiang G,Kaufman A J,Christie-Blick N, et al. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China:Implications for a large surfaceto-deep ocean δ13C gradient[J]. Earth and Planetary Science Letters,261:303-320.
[36]  Jiang G,Sohl L E,Christie-Blick N. 2003. Neoproterozoic stratigraphic comparison of the Lesser Himalaya(India)and Yangtze Block(South China): Paleogeographic implications[J]. Geology, 31:917-920.
[37]  Jiang S Y,Zhao H X,Chen Y Q, et al. 2007. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing,Jiangsu Province,China[J]. Chemical Geology,244:584-604.
[38]  Jones B,Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology,111:111-129.
[39]  Kamber B S,Webb G E. 2001. The geochemistry of late Archaean microbial carbonate:Implications for ocean chemistry and continental erosion history[J]. Geochimica et Cosmochimica Acta,65:2509-2525.
[40]  Kaufman A J,Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater:Stratigraphic and biogeochemical implications[J]. Precambrian Research,73(1):27-49.
[41]  Knoll A H. 2000. Learning to tell Neoproterozoic time[J]. Precambrian Research,100(1):3-20.
[42]  Ling H F,Chen X,Li D, et al. 2013. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area,South China:Implications for oxygenation of coeval shallow seawater[J]. Precambrian Research,225:110-127.
[43]  Liu P J,Yin C Y,Chen S M, et al. 2012. Discovery of Ceratosphaeridium(Acritarcha)from the Ediacaran Doushantuo Formation in Yangtze Gorges,South China and its biostragraphic implication[J]. Bulletin of Geosciences, 87(1):195-200.
[44]  Lu M,Zhu M Y,Zhao F C. 2012. Revisiting the Tianjiayuanzi section-the stratotype section of the Ediacaran Doushantuo Formation,Yangtze Gorges,South China[J]. Bulletin of Geosciences,87(1):183-194.
[45]  Lu M,Zhu M Y,Zhang J M, et al. 2013. The DOUNCE event at the top of Ediacaran Doushantuo Formation,South China:Broad stratigraphic occurrence and non-diagenetic origin[J]. Precambrian Research,225:86-109.
[46]  McFadden K A,Huang J,Chu X L, et al. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation[J]. Proceedings of the National Academy of Sciences of the United States of America,105:3197-3202.
[47]  McLennan S M. 1989. Rare earth elements in sedimentary rocks:Influence of provenance and sedimentary processes[J]. In:Geochemistry and Mineralogy of rare earthelements. ed. by Lipin B R and McKey G A. Rev. Mineral.,21:169-200.
[48]  McLennan S M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry. Geophysics. Geosystems,2(2000GC000109).
[49]  Michard A,Albarède F. 1986. The REE content of some hydrothermal fluids[J]. Chemical Geology,55:51-60.
[50]  Murray R W,Buchholtz Ten Brink M R,Gerlach D C, et al. 1991. Rare earth,major,and trace elements in chert from the Franciscan Complex and Monterey Group,California:Assessing REE sources to fine-grained marine sediments[J]. Geochimica et Cosmochimica Acta,55(7):1875-1895.
[51]  Nozaki Y,Zhang J,Amakawa H. 1997. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters,148:329-340.
[52]  Olivarez A M,Owen R M. 1991. The europium anomaly of seawater:Implications for fluvial versus hydrothermal REE inputs to the oceans[J]. Chemical Geology,92:317-328.
[53]  Pattan J N,Pearce N J G,Mislankar P G. 2005. Constraints in using Cerium-anomaly of bulk sediments as an indicator of paleo bottom water redox environment:A case study from the Central Indian Ocean Basin[J]. Chemical Geology,221:260-278.
[54]  Rimmer S M. 2004. Geochemical paleoredox indicators in Devonian-Missis sippian black shales,Central Appalachian Basin(USA)[J]. Chemical Geology,206:373-391.
[55]  Schrder S,Grotzinger J P. 2007. Evidence for anoxia at the Ediacaran-Cambrian boundary:The record of redox-sensitive trace elements and rare earth elements in Oman[J]. Journal of Geological Society,164:175-187.
[56]  Shields G A. 2005. Neoproterozoic cap carbonates:A critical appraisal of existing models and the plume world hypothesis[J]. Terra Nova,17:299-3104.
[57]  Shimizu H,Tachikawa K,Masuda A, et al. 1994. Cerium and neodymium isotope ratios and REE patterns in seawater from the North Pacific Ocean[J]. Geochimica et Cosmochimica Acta,58:323-333.
[58]  Slomp C P,Van Cappellen P. 2007. The global marine phosphorus cycle:Sensitivity to oceanic circulation[J]. Biogeosciences,4:155-171.
[59]  Sverjensky D A. 1984. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters,67:70-78.
[60]  Tribovillard N,Algeo T J,Lyons T, et al. 2006. Trace metals as paleoredox and paleoproductivity proxies:An update[J]. Chemical Geology,232:12-32.
[61]  Van den Boorn S,Van Bergen M J,Vroon P Z, et al. 2010. Silicon isotope and trace element constraints on the origin of~3.5Ga cherts:Implications for Early Archaean marine environments[J]. Geochimica et Cosmochimica Acta,74(3):1077-1103.
[62]  Wang J S,Jiang G Q,Xiao S H, et al. 2008. Carbon isotope evidence for widespread methane seeps in the ca.635Ma Doushantuo cap carbonate in south China[J]. Geology,36:347-350.
[63]  Wang J,Li Z X. 2003. History of Neoproterozoic rift basins in South China:Implications for Rodinia break-up[J]. Precambrian Research,122:141-158.
[64]  Webb G E,Kamber B S. 2000. Rare earth elements in Holocene reefal microbialites:A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta,64:1557-1565.
[65]  Wilde P,Quinby-Hunt M S,Erdtmann B. 1996. The whole-rock cerium anomaly:A potential indicator of eustatic sea-level changes in shales of the anoxic facies[J]. Sedimentary Geology,(10):1-7.
[66]  Wright J,Schrader H,Holser W T. 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochim. Cosmochim. Acta,51:637-644.
[67]  Yang J,Ding L F. 1998. Elemental geochemical anomaly in the Sinian Doushantuo Formation-Dengying Formation boundary in Miaohe,Hubei[J]. Acta Geologica Sinica,72(2):198-206.
[68]  Yang J D,Sun W G,Wang Z Z, et al. 1999. Variations in Sr and C isotopes and Ce anomalies in successions from China:Evidence for the oxygenation of Neoproterozoic seawater?[J]. Precambrian Research,93(2-3):215-233.
[69]  Yin C Y,Tang F,Liu Y Q, et al. 2005. U-Pb zircon age from the base of the Ediacaran Doushantuo Formation in the Yangtze Gorges,South China,constraint on the age of Marinoan Glaciation[J]. Episodes,28(1):48-49.
[70]  Zhang S H,Jiang G Q,Zhang J M, et al. 2005. U-Pb sensitive high solution ion microprobe ages from the Doushantuo Formation in South China,Constraints on late Neoproterozoic glaciations[J]. Geology,33(6):473-476.
[71]  Zhao Y Y,Zheng Y F,Chen F. 2009. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui,South China[J]. Chemical Geology,265:345-362.
[72]  Zhou C M,Tucker R,Xiao S H, et al. 2004. New constraints on the ages of Neoproterozoic glaciations in south China[J]. Geology,32(5):437-440.
[73]  Zhou C M,Xiao S H. 2007. Ediacaran δ13C chemostratigraphy of South China[J]. Chemical Geology,237:89-108.
[74]  Zhu M Y,Lu M,Zhang J M, et al. 2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei,South China[J]. Precambrian Research,225:7-28.
[75]  Zhu M Y,Zhang J M,Michael S, et al. 2003. Sinian-Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze Platform: An integrated approach[J]. Progress in Natural Science,13(12):951-960.
[76]  Zhu M Y,Zhang J M,Yang A H. 2007. Integrated Ediacaran(Sinian)chronostratigraphy of South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,254:7-61

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133