全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

藏北羌塘盆地中央隆起带下二叠统展金组沉积岩稀土元素地球化学特征及其地质意义

DOI: 10.7605/gdlxb.2014.06.073, PP. 926-934

Keywords: 羌塘盆地,中央隆起带,二叠系,展金组,稀土元素特征,地球化学

Full-Text   Cite this paper   Add to My Lib

Abstract:

对于青藏高原北部羌塘盆地中央隆起带晚古生代的构造演化历史,学术界目前仍存在不同观点。位于盆地中央隆起带角木日地区的羌资5井揭示出的下二叠统展金组细碎屑岩,对于该地区古地理研究和构造背景约束具有重要意义。通过对该井中17个展金组粉砂质泥岩和泥质粉砂岩样品的稀土元素地球化学研究表明:样品ω(ΣREE)整体较高,ω(ΣLREE)/ω(ΣHREE)及(La/Yb)N等比值显示其具有较弱的轻、重稀土元素分异;Ceanom,Ce/Ce*,Eu/Eu*等参数反映样品主要形成于具有一定深度的浅海还原环境;(La/Yb)N值自下而上呈降低趋势,表明下部的沉积速率低于上部。稀土元素组合及其比值特征指示展金组物源以玄武岩和沉积岩混合为主。根据La-Th-Sc构造背景判别图解分析,并与不同构造背景下的杂砂岩稀土元素特征比较,认为展金组沉积岩的物源可能来自于具有类似岛弧构造特征的环境。

References

[1]  邓万明,尹集翔,呙中平. 1996. 羌塘茶布—双湖地区基性超基性岩和火山岩研究[J]. 中国科学(D辑),26(4):296-301.
[2]  段开宾,李忠雄,汪正江. 2011. 藏北羌塘盆地羌资1井中侏罗统沥青脉生物标志化合物分布特征及其意义[J]. 沉积与特提斯地质,31(3):71-77.
[3]  冯兴雷,付修根,谭福文,等. 2010. 北羌塘盆地沃若山剖面上三叠统土门格拉组沉积岩地球化学特征与构造背景分析[J]. 现代地质,24(5):910-918.
[4]  胡俊杰,李琦,陈若瑜,等. 2014. 羌塘盆地中、下二叠统碳酸盐岩白云石有序度控制因素研究[J]. 矿物岩石,34(2):91-95.
[5]  李才. 1987. 龙木错—双湖—澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J]. 长春地质学院学报,17(2):155-166.
[6]  李才,翟庆国,董永胜,等. 2007. 青藏高原龙木错—双湖板块缝合带与羌塘古特提斯演化记录[J]. 地质通报,26(1):13-21.
[7]  李娟,于炳松,郭峰. 2013. 黔北地区下寒武统底部黑色页岩沉积环境条件与源区构造背景分析[J]. 沉积学报,31(1):20-31.
[8]  李双健,肖开华,沃玉进,等. 2008. 湘西、黔北地区志留系稀土元素地球化学特征及其地质意义[J]. 现代地质,22(2):273-280.
[9]  刘士林,刘蕴华,林舸,等. 2006. 渤海湾盆地南堡凹陷新近系泥岩稀土元素地球化学特征及其地质意义[J]. 现代地质,20(3):449-456.
[10]  乔耿彪,杨钟堂,李智明,等. 2011. 勉略地区寒武纪含碳岩系稀土元素地球化学特征及成因意义[J]. 吉林大学学报(地球科学版),41(4):1067-1076.
[11]  宋春彦,王剑,付修根,等. 2013. 羌塘盆地藏夏河组砂岩地球化学特征及意义[J]. 地球科学: 中国地质大学学报,38(3):508-518.
[12]  王剑,付修根,陈文西,等. 2007. 藏北北羌塘盆地晚三叠世古风化壳地质地球化学特征及其意义[J]. 沉积学报,25(4):487-494.
[13]  王权,续世朝,魏荣珠,等. 2006. 青藏高原羌塘北部托和平措一带二叠系展金组火山岩的特征及构造环境[J]. 地质通报,25(1-2):146-155.
[14]  杨兴莲,朱茂炎,赵元龙,等. 2008. 黔东震旦系—下寒武统黑色岩系稀土元素地球化学特征[J]. 地质论评,22(2):273-280.
[15]  翟庆国,李才,程立人,等. 2004. 西藏羌塘角木日地区二叠纪蛇绿岩的地质特征及意义[J]. 地质通报,23(12):1228-1230.
[16]  翟庆国,李才,黄小鹏. 2006. 西藏羌塘中部角木日地区二叠纪玄武岩的地球化学特征及其构造意义[J]. 地质通报,25(12):1419-1427.
[17]  张沛,郑建平,张瑞生,等. 2005. 塔里木盆地塔北隆起奥陶系—侏罗系泥岩稀土元素地球化学特征[J]. 沉积学报,23(4):740-746.
[18]  赵振华. 1993. 铕地球化学特征的控制因素[J]. 南京大学学报:自然科学版,(5):271-280.
[19]  Allègre C J,Minster J F. 1978. Quantitative models of trace element behavior in magmatic processes[J]. Earth Planet Science Letter,38(1):1-25.
[20]  Berry W B N,Wilde P. 1978. Progressive ventilation of the oceans:An explanation for the distribution of the Lower Paleozoic black shales[J]. Amer. Jour. Sci.,278:257-275.
[21]  Bhatia M R. 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudstones provenance and tectonic control[J]. Sedimentary Geology,45(1/2):97-113.
[22]  Bhatia M R,Crook K A W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology,92(2):181-193.
[23]  Boynton W V. 1984. Cosmochemistry of the rare earth element[A]. In:Henderson P(ed). Rare Earth Element Geochemistry:Developments in Geochemistry,2[M]. Amsterdam:Elsevier,63-114.
[24]  Cox R,Lowe D R,Cullers R L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica Cosmochimica Acta,59(14):2919-2940.
[25]  Dickinson W R,Suczek C A. 1979. Plate tectonics and sandstone compositions[J]. AAPG Bulletin,63:2164-2182.
[26]  Elderfield H,Greaves M J. 1982. The rare earth elements in seawater[J]. Nature,296(18):214-219.
[27]  Fouquet Y,Stackelberg U,Charlou J. 1993. Metallogenesis in back-arc environments:The Lau basin example[J]. Econ. Geol.,88:2154-2181.
[28]  Haskin H A,Haskin L A. 1966. Rare earth in European shales:A redeter-mination[J]. Science,154:507-509.
[29]  Hofmann A. 2005. The geochemistry of sedimentary rocks from the Fig Tree Group,Barberton greenstone belt:Implications for tectonic,hydrothermal and surface processes during mid-Archaean times[J]. Precambiran Research,143:23-49.
[30]  Jin X. 2002. Permo-Carboniferous sequences of Gondwana affinity in southwest China and their paleogeographic implications[J]. Journal of Asian Earth Sciences,20(6):633-646.
[31]  Kapp P,Yin A,Manning C E, et al. 2003. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt,central Tibet[J]. Tectonics,22(4):17-44.
[32]  McLennan S M,Hemming S R,McDaniel D K, et al. 1993. Geochemical approaches to sedimentation,provenance,and tectonics[J]. Geological Society of America Special Paper,284:21-40.
[33]  Murray R W. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale[J]. Geology,18:268-271.
[34]  Shields G,Stille P. 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies:An isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology,175(1-2):29-48.
[35]  Taylor S R. 1983. Geochemistry of loess,continental crustal composition and crustal modal ages[J]. Geochimica Cosmochimica Acta,47:1897-1904.
[36]  Taylor S R,McLennan S M. 1985. The continental crust:Its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks[M]. Oxford London:Blackwell Scientific Publication,1-301.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133