全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

湖南慈利溪口剖面埃迪卡拉系陡山沱组碳酸盐岩微量元素特征及其古环境意义

DOI: 10.7605/gdlxb.2015.03.25, PP. 297-308

Keywords: 陡山沱组,碳酸盐岩,微量元素,古环境,慈利,溪口,湖南

Full-Text   Cite this paper   Add to My Lib

Abstract:

以湖南慈利溪口埃迪卡拉系陡山沱组剖面为研究对象,分析了64件碳酸盐岩样品的微量元素以及稀土元素特征。结果表明,利用U/Th、Ce异常和Ca/Mg等多种指标识别出的陡山沱期古氧化还原环境与层序地层学的研究结果基本一致,说明碳酸盐岩的这3个指标在重建埃迪卡拉纪古海洋环境的研究中具有一定的适用性。稀土元素配分模式在陡山沱组底部和中部均发生了明显的由典型淡水模式向典型古海水模式的转变,很可能指示了在Marinoan冰期和Gaskier冰期结束之后,大量的间冰期冰融淡水注入海洋并逐步被古海水取代。较高的Eu异常值以及前人在溪口剖面发现的多期古地震证据可能暗示了海底热液活动几乎贯穿于整个埃迪卡拉纪陡山沱期,且具有早期剧烈、晚期逐渐趋于平缓的特征。多期次的海底热液活动为古海洋提供了重要的磷质来源,对埃迪卡拉纪生物的出现与繁盛具有重要的意义。

References

[1]  Frimmel H E. 2009. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J]. Chemical Geology,258:338-353.
[2]  García M G,Lecomte K L,Pasquini A I, et al. 2007. Sources of dissolved REE in mountainous streams draining granitic rocks,Sierras Pampeanas(Córdoba,Argentina)[J]. Geochimica et Cosmochimica Acta,71:5355-5368.
[3]  Goldstein S J,Jacobsen S B. 1988. Rare-earth elements in river waters[J]. Earth and Planetary Science Letters,89:35-47.
[4]  Guo Q J,Shields G A,Liu C Q. 2007. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China:Implications for organosedimentary metal enrichment and silicification in the early Cambrian[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,254:194-216.
[5]  Hurtgen M T,Halverson G P,Arthur M A, et al. 2006. Sulfur cycling in the aftermath of a 635-Ma snowball glaciation:Evidence for a syn-glacial sulfidic deep ocean[J]. Earth and Planetary Science Letters,245:551-570.
[6]  常华进,储雪蕾,冯连君,等. 2009. 氧化还原敏感元素对古海洋沉积环境的指示意义[J]. 地质论评,55(1):91-99.
[7]  杜远生,朱杰,顾松竹,等. 2007. 北祁连造山带寒武系—奥陶系硅质岩沉积地球化学特征及其对多岛洋的启示[J]. 中国科学(D辑),37(10):1314-1329.
[8]  冯洪真,Bernd-D Erdtmann,王海峰. 2000. 上扬子早古生代全岩Ce异常与海平面长缓变化[J]. 中国科学(D辑),30(1):66-72.
[9]  郭庆军,杨卫东,刘丛强,等. 2003. 贵州瓮安生物群和磷矿形成的沉积地球化学研究[J]. 矿物岩石地球化学通报,22(3):202-208.
[10]  黄晶,储雪蕾,常华,等. 2009. 三峡地区埃迪卡拉系陡山沱组帽碳酸盐岩的微量元素和稀土元素研究[J]. 科学通报,54(22):3498-3506.
[11]  李旭兵,赵灿,刘安,等. 2013. 雪峰山西侧地区陡山沱组层序地层划分及沉积体系展布[J]. 地层学杂志,37(4):527-533.
[12]  王立社,侯俊富,张复新,等. 2010. 北秦岭庙湾组黑色岩系稀土元素地球化学特征及成因意义[J]. 地球学报,31(1):73-82.
[13]  王约,楚靖岩,王训练. 2009. 华南震旦系陡山沱组磷质震积岩及其与多细胞生物群相关性初探[J]. 地质论评,55(5):620-627.
[14]  夏文杰,杜森官,徐新煌,等. 1994. 中国南方震旦纪岩相古地理与成矿作用[M]. 北京:地质出版社,50-62.
[15]  严德天,陈代钊,王清晨,等. 2009. 扬子地区奥陶系—志留系界线附近地球化学研究[J]. 中国科学(D辑),39(3):285-299.
[16]  赵灿,李旭兵,李志宏,等. 2012. 湖南慈利溪口震旦系陡山沱组震积岩的发现及其地质意义[J]. 沉积学报,30(6):1032-1041.
[17]  Algeo T J. 2004. Can marine anoxic events draw down the trace element inventory of seawater?[J]. Geology,32:1057-1060.
[18]  Dolenec M. 2005. The Permian-Traissic Boundary in the Karavanke Mountains(Brsnina section,Solenia):The ratio of Th/U as a possible indicator of changing redox conditions at the P/T transition[J]. RMZ-Materials and the Geoenvironment,52(2):437-445.
[19]  Dolenec T,Lojen S,Ramovs A. 2001. The Permian-Triassic boundary in Western Slovenia(Idrijca Valley section):Magnetostratigraphy,stable isotopes,and elemental variations[J]. Chemical Geology,175(1-2):175-190.
[20]  Douville E,Bienvenu P,Charlou J L, et al. 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta,63:627.
[21]  Font E,Nedelec A,Trindade R I F, et al. 2006. Chemostratigraphy of the Neoproterozoic Mirassol d‘Oeste cap dolostones(Mato Grosso,Brazil):An alternative model for Marinoan cap dolostone formation[J]. Earth and Planetary Science Letters,250(1-2):89-103.
[22]  Jiang G Q,Kennedy M J,Christie-Blick N, et al. 2006. Stratigraphy,sedimentary structures,and textures of the late Neoproterozoic Doushantuo cap carbonate in south China[J]. Journal of Sediment Research,76:978-995.
[23]  Jones B J,Manning A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology,111:111-129.
[24]  Lawrence M G,Greig A,Collerson K D, et al. 2006. Rare earth element and yttrium variability in South East Queensland waterways[J]. Aquatic Geochemistry,12:39-72.
[25]  Lyons T W,Werne J P,Hollander D J, et al. 2003. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin,Venezuela[J]. Chemical Geology,195:131-157.
[26]  Meyera E E,Quicksallb A N,Landisa J D, et al. 2012. Trace and rare earth elemental investigation of a Sturtian cap carbonate,Pocatello,Idaho:Evidence for ocean redox conditions before and during carbonate deposition[J]. Precambrian Research,192-195:89-106.
[27]  Murray R W,Buchholtz Ten Brink M R,Gerlach D C,et al. 1991. Rare earth,major,and trace elements in chert from the Franciscan Complex and Monterey Group,California:Assessing REE sources to fine-grained marine sediments[J]. Geochimica et Cosmochimica Acta,55:1875-1895.
[28]  Nothdurft L D,Webb G E,Kamber B S. 2004. Rare earth element geochemistry of Late Devonian reefal carbonates,Canning Basin,Western Australia:Confirmation of a seawater REE proxy in ancient limestones[J]. Geochim Cosmochim Acta,68:263-283.
[29]  Nozaki Y,Alibo D S. 2003. Importance of vertical geochemical processes in controlling the oceanic profiles of dissolved rare earth elements in the northeastern Indian Ocean[J]. Earth and Planetary Science Letters,205:155-172.
[30]  Owen A W,Armstrong H A,Floyd J D. 1999. Rare earth element geochemistry of upper Ordovician cherts from the Southern Upland of Scotland[J]. Journal of the Geological Society of London,156:191-204.
[31]  Rimmer S M. 2004. Geochemical paleoredox indicators in Devonian-Mississippian black shales,Central Appalachian Basin(USA)[J]. Chemical Geology,206:373-391.
[32]  Sarkar A,Sarangi S,Ebihara A, et al. 2003. Carbonate geochemistry across the eocene/oligocene boundary of Kutch,western India:Implications to oceanic O2-poor condition and foraminiferal extinction[J]. Chemical Geology,201(3-4):281-293.
[33]  Schroeder S,Grotzinger J P. 2007. Evidence for anoxia at the Ediacaran-Cambrian boundary: The record of redox-sensitive trace elements and rare earth elements in Oman[J]. Journal of the Geological Society of London,164(1):175-187.
[34]  Shen B,Xiao S H,Kaufman A J, et al. 2008. Stratification and mixing of a post-glacial Neoproterozoic ocean:Evidence from carbon and sulfur isotopes in a cap dolostone from northwest China[J]. Earth and Planetary Science Letters,265:209-228.
[35]  Shen Y N,Zhang T G,Hoffman P F. 2008. On the coevolution of Ediacaran oceans and animals[J]. Proceedings of National Academy of Sciences of the United States of America,105(21):7376-7381.
[36]  Spangenberg J E,Bagnoud-Velsquez M,Boggiani P C, et al. 2013. Redox variations and bioproductivity in the Ediacaran:Evidence from inorganic and organic geochemistry of the Corumb Group,Brazil[J]. Gondwana Research,
[37]  Taylor S R,McClennan S M. 1985. The Continental Crustal:Its Composition and Evolution[M]. Oxford:Blackwell,312.
[38]  Tribovillard N,Desprairies A,Lallier-Vergès E, et al. 2006. Geochemical study of organic-rich cycles from the Kimmeridge Clay Formation of Yorkshire(G B): Productivity vs. anoxia[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,108:165-181.
[39]  Wright J,Schrader H,Holser W T. 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta,51:631-644.
[40]  Zhao Y Y,Zheng Y F,Chen F K. 2009. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui,South China[J]. Chemical Geology,265:345-362.
[41]  Zhou C M,Xiao S H. 2007. Ediacaran δ13C chemostratigraphy of South China[J]. Chemical Geology,237:89-108.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133