全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

砂岩侵入体系模拟及形成机理分析

DOI: 10.7605/gdlxb.2015.05.055, PP. 669-676

Keywords: 流化,超压,物理模拟,砂岩侵入体系,形成机理

Full-Text   Cite this paper   Add to My Lib

Abstract:

砂岩侵入体系是一种普遍的地质现象,近些年来越来越受到地学界的重视,但对其形成机理探讨较少。作者及研究团队通过设计一套室内模拟实验装置,来简化模拟3层地层结构中砂岩侵入体系的形成和演化过程。在之前模拟实验(实验变量为顶层沉积物的厚度、进水管的结构)结果的基础上,进一步考察了地形坡度对实验结果的影响,并对砂岩侵入体系的形成机理进行了分析。实验过程中,共观察到7种不同形态不同样式的管道,并对实验过程中压力变化进行了测试。对实验结果分析认为:盖层厚度越大,压力下降的速度越慢,越不利于压力的释放;随着实验的继续进行,砂岩侵入体最终会转化为砂岩喷出体并喷出地表;不稳定的地形有利于触发疏松沉积物发生变形。实验表明,超压是砂岩侵入体发生的最重要条件之一,沉积盆地中的压实不均衡和生烃作用是可独立产生大规模超压的2种主要机制。

References

[1]  郝芳,董伟良. 2001. 沉积盆地超压系统演化、流体流动与成藏机理[J]. 地球科学进展,16(1):79-85.
[2]  易雪斐,张昌民,李少华,等. 2012. 砂岩侵入体的形成机制分析[J]. 古地理学报,14(6):727-732.
[3]  易雪斐,张昌民,李少华,等. 2014. 砂岩侵入体系物理模拟实验[J]. 古地理学报,16(5):605-612.
[4]  Anketell J M,Cegla J,Dzulinsky S. 1970. On the deformational structures in systems with reversed density gradients[J]. Ann. Soc. Geol. Pol., 1(XL):3-30.
[5]  Dasgupta P. 2008. Experimental decipherment of the soft-sediment deformation observed in the upper part of the Talchir Formation(Lower Permian),Jharia Basin,India[J]. Sedimentary Geology,205:100-110.
[6]  Dzulynski S,Walton E K. 1965. Sedimentary Features of Flysch and Greywackes[M]. Amsterdam:Elsevier,274.
[7]  Frey S E,Gingras M K,Dashtgard S E. 2009. Experimental studies of gasescape and water-escape structures:Mechanisms and morphologies[J]. J. Sed. Res.,79:808-816.
[8]  Holm G. 1998. How abnormal pressures affect hydrocarbon exploration,exploitation[J]. Oil & Gas Journal,96:79-84.
[9]  Kuenen P H. 1958. Experiments in geology[J]. Trans. Geol. Soc. Glasgow,23:1-28.
[10]  Lowe D R. 1975. Water escape structures in coarse-grained sediments[J]. Sedimentology,22:157-204.
[11]  McKee E D,Goldberg M. 1969. Experiments on formation of contorted structures in mud[J]. Geol. Soc. Am. Bull.,80:231-244.
[12]  McKee E D,Reynolds M A,Baker Jr. C H. 1962. Laboratory studies on deformation in unconsolidated sediment[D]. U.S. Geol. Surv. Prof. Pap.: 155-160.
[13]  Moretti M,Alfarob P,Caselles O, et al. 1999. Modelling seismites with a digital shaking table[J]. Tectonophysics,304:369-383.
[14]  Mrz T,Karlik E A,Kreiter S, et al. 2007. An experimental setup for fluid venting in unconsolidated sediments:New insights to fluid mechanics and structures[J]. Sedimentary Geology,196:251-267.
[15]  Nichols R J,Sparks R S,Wilson C J N. 1994. Experimental studies of the fluidization of layered sediments and the formation of fluid escape structures[J]. Sedimentology,41:233-253.
[16]  Osborne M J,Swarbrick R E. 1997. Mechanisms for generating overpressure in sedimentary basins:A reevaluation[J]. AAPG Bulletin,81:1023-1041.
[17]  Owen G. 1996. Experimental soft-sediment deformation:Structures formed by the liquefaction of unconsolidated sands and some ancient examples[J]. Sedimentology,43:279-293.
[18]  Pralle N,Kulzer M,Gudehus G. 2003. Experimental evidence on the role of gas in sediment liquefaction and mud volcanism. In:Van Rensbergen P,Hillis R R,Maltman A J, et al(eds). Subsurface Sediment Mobilization[M]. Geol. Soc. Lond. Spec. Publ.,216:159-171.
[19]  Rettger R E. 1935. Experiments on soft-rock deformation[J]. AAPG Bulletin,19:271-292.
[20]  Rodrigues N,Cobbold P R,Lseth H. 2009. Physical modelling of sand injectites[J]. Tectonophysics,474:610-632.
[21]  Swarbrick R E. 1999. AADE forum:Pressure regimes in sedimentary basins and their prediction[J]. Marine and Petroleum Geology,16:483-486.张西娟

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133