|
- 2015
短纤维复合材料宏微观内聚力模型参数测量的实验与数值混合法
|
Abstract:
提出了一种改进的实验与数值混合法。该方法采用随机短纤维增强复合材料的紧凑拉伸实验, 首先得到材料的宏观内聚力模型, 进而确定该材料纤维基体界面微观内聚力模型参数。通过有限元法和基于场投影的反解法得到了宏观内聚力模型结果, 对比分析这两个方法的结果, 得出该反解法对误差的容忍度较低。随后采用改进的反解法, 用数字图像相关法(DIC)直接获取宏观内聚力模型分离量, 减少了该反解法未知数的数量, 提高了容错率。再将DIC和改进的反解法结合, 对该材料裂纹尖端宏观内聚力区的牵引力进行了反解。采用双线性内聚力模型, 根据Mori-Tanaka方法, 将求得的宏观内聚力定律与纤维基体界面微观内聚力定律关联起来, 从而求得了纤维基体界面微观内聚力模型参数。该方法和结果可为短纤维增强复合材料纤维基体界面的微观力学分析提供实验基础。 An improved experimental-numerical hybrid method was proposed. Compact tension experiment of the random short fiber reinforced composites was used in this method, and macroscopic cohesive zone model (CZM) of the material was obtained firstly, then the microscopic CZM parameters of the fiber/matrix interfaces of the material were obtained. The macroscopic CZM results were obtained by both finite element method and the inverse extraction based on field projection method. By comparing the results of the two methods, the fault tolerance of the inverse extraction method was found to be lower. Then the improved inverse extraction method was adopted, and the separation amount of macroscopic CZM was directly obtained by digital image correlation method (DIC), so that the amount of unknowns in the inverse extraction method was reduced, and the fault tolerance was also improved. The DIC and the improved inverse extraction method were combined, and the traction of macroscopic cohesive zone at the cracktip of the material was inverse extracted. The bilinear CZM was adopted, and the Mori-Tanaka method was used to link the macroscopic cohesive law obtained above and the microscopic cohesive law for fiber/matrix interfaces. The model parameters of microscale cohesive of fiber/matrix interfaces were also determined. This method and the results provide an experimental basis for the micromechanics analysis of the fiber/matrix interface of short fiber reinforced composites. 国家自然科学基金(10972155, 10572103)
[1] | Wang Z Q, Lei H S, Wang X Q, et al. Finite element simulation for macroscopic mechanical behavior of nano TiO2 particulate reinforced epoxy composites with weak interface[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 236-243 (in Chinese). 王振清, 雷红帅, 王晓强, 等. 纳米TiO2颗粒弱界面增强树脂基复合材料宏观力学行为有限元模拟[J]. 复合材料学报, 2013, 30(1): 236-243. |
[2] | Yu M, Zhu P, Ma Y Q. Experimental study and numerical prediction of the elastic properties of syntactic foams considering the interfacial effect[J]. Acta Materiae Compositae Sinica, 2013, 30(3): 225-232 (in Chinese). 喻明, 朱平, 马颖琦. 考虑界面效应的复合泡沫塑料弹性性能数值仿真预测与试验研究[J]. 复合材料学报, 2013, 30(3): 225-232. |
[3] | Ye Q, Chen P H. Prediction on the strength parameters of cohesive zone model for simulation composite delamination[J]. Acta Mechanica Solida Sinica, 2012, 33(6): 566-573 (in Chinese). 叶强, 陈普会. 复合材料粘聚区模型的强度参数预测[J]. 固体力学学报, 2012, 33(6): 566-573. |
[4] | Wang Y Q, Hu J D, Wang L L. Cohesive zone modeling of spallation in ductile metals[J]. Acta Mechanica Solida Sinica, 2012, 33(5): 465-470 (in Chinese). 王永刚, 胡剑东, 王礼立. 金属材料层裂破坏的内聚力模型[J]. 固体力学学报, 2012, 33(5): 465-470. |
[5] | Zhao P F, Shang F L, Yan Y B, et al. Elasto-plastic cohesive zone modeling of delamination of Si/Cu interface in a nano-cantilever[J]. Acta Mechanica Solida Sinica, 2011, 32(1): 10-20 (in Chinese). 赵朋飞, 尚福林, 闫亚宾, 等. 纳米悬臂梁Si/Cu界面破坏的弹塑性内聚力模拟[J]. 固体力学学报, 2011, 32(1): 10-20. |
[6] | Dugdale D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. |
[7] | Barenblatt G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7(1): 55-129. |
[8] | Hong S, Kim K S. Extraction of cohesive-zone laws from elastic far-fields of a cohesive crack tip: a field projection method[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(7): 1267-1286. |
[9] | Kim H G, Chew H B, Kim K S. Inverse extraction of cohesive zone laws by field projection method using numerical auxiliary fields[J]. International Journal for Numerical Methods in Engineering, 2012, 91(5): 516-530. |
[10] | Tan H, Huang Y, Liu C, et al. The Mori-Tanaka method for composite materials with nonlinear interface debonding[J]. International Journal of Plasticity, 2005, 21(10): 1890-1918. |
[11] | Tan H, Liu C, Huang Y, et al. The cohesive law for the particle/matrix interfaces in high explosives[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(8): 1892-1917. |
[12] | Rice J R, Rosengren G F. Plane strain deformation near a crack tip in a power-law hardening material[J]. Journal of the Mechanics and Physics of Solids, 1968, 16(1): 1-12. |
[13] | Xie D, Qian Q, Li C A. Numerical calculation method and engineering application of fracture mechanics[M]. Beijing: Science Press, 2009: 19-27 (in Chinese). 解德, 钱勤, 李长安. 断裂力学中的数值计算方法及工程应用[M]. 北京: 科学出版社, 2009: 19-27. |
[14] | Shen M, Touchard F, Bezine G, et al. Direct numerical simulation of fracture behavior for random short wood fibers reinforced composites in comparison with digital image correlation experiments[J/OL]. Journal of Thermoplastic Composite Materials (2013-06-13). |
[15] | Pan B, Xie H, Wang Z, et al. Study on subset size selection in digital image correlation for speckle patterns[J]. Optics Express, 2008, 16(10): 7037-7048. |
[16] | Pan B, Xie H M. Full-field strain measurement based on least-square fitting of local displacement for digital image correlation method[J]. Acta Optica Sinica, 2007, 27(11): 1980-1986 (in Chinese). 潘兵, 谢惠民. 数字图像相关中基于位移场局部最小二乘拟合的全场应变测量[J]. 光学学报, 2007, 27(11): 1980-1986. |