全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

形状记忆合金的力学及界面参数和体积分数对大块金属玻璃基复合材料增韧的影响
Effects of mechanics and interface parameters and volume fraction of shape memory alloys on toughening of bulk metallic matrix glass composites

DOI: 10.13801/j.cnki.fhclxb.20140422.001

Keywords: 复合材料,大块金属玻璃,形状记忆合金,增韧
composites
,bulk metallic glass,shape memory alloy,toughening

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用考虑塑性的超弹性材料模型和基于损伤塑性的准脆性材料模型, 建立了三维单胞有限元模型, 模拟了形状记忆合金颗粒增韧大块金属玻璃基复合材料的单调拉伸行为。讨论了形状记忆合金的力学参数、体积分数、界面厚度和界面材料参数对金属玻璃增韧效果的影响。结果表明: 提高形状记忆合金的相变应变和马氏体塑性屈服应力将显著提高形状记忆合金颗粒增韧大块金属玻璃基复合材料的拉伸失效应变;形状记忆合金弹性模量超过50.0 GPa、马氏体塑性屈服应力超过1.8 GPa后, 复合材料的拉伸失效应变变化不大。能同时兼顾失效应变和失效应力的形状记忆合金体积分数为15%左右。复合材料界面弹性模量和界面屈服应力的增加将提高复合材料的失效应力, 但对失效应变影响不大;复合材料界面厚度的增加在提高失效应变的同时, 也降低了复合材料的失效应力。 Using superelasticity material model taking plasticity into consideration and quasi-brittle material model based on damage plasticity, a three-dimensional finite element unit cell model was established, and the monotonic tensile behaviors of shape memory alloy particle toughening bulk metallic glass matrix composites were simulated. The effects of mechanics parameters and volume fraction of shape memory alloys, along with interface thickness and interface material parameters on the toughening of bulk metallic glass were discussed. Results show that the increasing of the phase transformation strain of shape memory alloys and martensite plastic yield stress can improve the tensile failure strain of shape memory alloy particle toughening bulk metallic glass matrix composites significantly; meantime, the tensile failure strain changes little when the elastic modulus of shape memory alloys is beyond 50.0 GPa and martensite plastic yield stress is over 1.8 GPa. The reasonable volume fraction of shape memory alloy in balance of failure strain and failure stress is about 15%. The increasing of composites interfacial elastic modulus and interfacial yield stress can improve the failure stress of composites; however, the failure strain does not change a lot with them. The increasing of the thickness of composites interface can improve the failure strain while decreases the failure stress of composites. 国家自然科学基金(11202171, 11372259); 四川省创新团队(2013TD0004)

References

[1]  Qiao J W, Sun A C, Huang E W. Tensile deformation micromechanisms for bulk metallic glasses matrix composites: From work-hardening to softening[J]. Acta Materialia, 2011, 59(10): 4126-4137.
[2]  Zhang R X, Ni Q Q, Natsuki T. Mechanical properties of composites filled with SMA particles and short fibers[J]. Composite Structures, 2007, 79(1): 90-96.
[3]  Fathollah T B, Farid T. Characterization of a shape memory alloy hybrid composite plate subject to static loading[J]. Materials and Design, 2011, 32(5): 2923-2933.
[4]  He Z Q, Wang X L, Quan B Y. Development in strength and ductility of amorphous alloys[J]. Heat Treatent of Metals, 2007, 32(5): 31-36 (in Chinese). 贺自强, 王新林, 全白云. 非晶态合金的强韧性及其研究进展[J]. 金属热处理, 2007, 32(5): 31-36.
[5]  Fu H M, Zhang H F. Synthesis and mechanical properties of Cu-based bulk metallic glasses composites containing in-situ TiC particles[J]. Scripta Materialia, 2005, 52(7): 669-673.
[6]  Zhu Y P, Dui G S. Micromechanical modeling of mechanical property for SMA reinforced composite[J]. Acta Materiae Compositae Sinica, 2008, 25(2): 156-160 (in Chinese). 朱玉萍, 兑关锁. SMA增强复合材料力学特性的细观力学模型[J]. 复合材料学报, 2008, 25(2): 156-160.
[7]  Wu Y, Xiao Y H, Chen G. Bulk metallic glass composites with transformation-mediated work-hardening and ductility[J]. Advanced Materials, 2010, 22(25): 2770-2773.
[8]  Zhang J F, Wang Z Q, Zhou J S. Numerical modeling of composite representative volume element based on Python-Abaqus[J]. Aerospace Material Process, 2009(3): 25-29 (in Chinese). 章继峰, 王振清, 周建生. 基于Python-Abaqus复合材料代表性体积元的数值模拟[J]. 宇航材料工艺, 2009(3): 25-29.
[9]  Jiao W W. Numerical simulation for ratcheting of particle reinforced metal matrix composites based on periodical boundary condition[D]. Chengdu: Southwest Jiaotong University, 2011 (in Chinese). 焦文文. 基于周期性边界条件的颗粒增强金属基复合材料棘轮行为的数值模拟[D]. 成都: 西南交通大学, 2011.
[10]  Kan Q H, Kang G Z, Qian L M. Super-elastic constitutive model considering plasticity and its finite element implementation[J]. Acta Mechanica Solida Sinica, 2010, 23(1): 1-11.
[11]  Shao X J, Kang G Z, Guo S J. Effect of interfacial bonding on ratcheting of SiCP/6061Al composite[J]. Acta Materiae Compositae Sinica, 2008, 25(4): 119-125 (in Chinese). 邵雪娇, 康国政, 郭素娟. 界面性能对SiCP/6061Al复合材料棘轮行为的影响[J]. 复合材料学报, 2008, 25(4): 119-125.
[12]  Yang X Q. NiTi shape memory alloy toughening Al2O3 ceramics[D]. Jinan: Shandong University, 2011 (in Chinese). 杨秀青. NiTi形状记忆合金增韧Al2O3陶瓷的研究[D]. 济南: 山东大学, 2011.
[13]  Trexler M M, Thadhani N N. Mechanical properties of bulk metallic glasses[J]. Progress in Materials Science, 2010, 55(8): 759-839.
[14]  Zheng Q, Shi H G. Progress in improving the room temperature brittleness of bulk metallic glasses[J]. Ordnance Material Science and Engineering, 2012, 35(5): 87-91 (in Chinese). 郑强, 史洪刚. 改善块体金属玻璃室温脆性的研究进展[J]. 兵器材料科学与工程, 2012, 35(5): 87-91.
[15]  Iqbal M. Synthesis and mechanical properties of an amorphous Zr-Ni-Al-Cu alloy[J]. Journal of Alloys and Compounds, 2006, 422(1): 218-222.
[16]  Marco E S, J?rg F L. Bulk metallic glass-graphite composites[J]. Scripta Materialia, 2007, 56(12): 1079-1082.
[17]  Jani J M, Leary M, Subic A. A review of shape memory alloy research, applications and opportunities[J]. Materials and Design, 2013, 56: 1078-1113.
[18]  Cui D, Li H N, Song G B. Process on study and application of shape memory alloy in civil engineering[J]. Journal of Disaster Prevention and Mitigation Engineering, 2005, 25(1): 86-94 (in Chinese). 崔迪, 李宏男, 宋刚兵. 形状记忆合金在土木工程中的研究与应用进展[J]. 防震减灾工程学报, 2005, 25(1): 86-94.
[19]  Kuang Y C, Ou J P. Research on the deformation characteristics of smart concrete beam embedded with shape memory alloy wires[J]. China Railway Science, 2008, 29(4): 41-46 (in Chinese). 匡亚川, 欧进萍. 形状记忆合金智能混凝土梁变形特性的研究[J]. 中国铁道科学, 2008, 29(4): 41-46.
[20]  Zhu Y G, Lv H X, Yang D Z. Mechanical property of elastoplastic matrix composite reinforced by long SMA fibers[J]. Acta Materiae Compositae Sinica, 2002, 19(2): 89-93 (in Chinese). 朱祎国, 吕和祥, 杨大智. SMA长纤维增强弹塑性基体复合材料的力学性能[J]. 复合材料学报, 2002, 19(2): 89-93.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133