|
- 2015
2.5D机织复合材料压缩性能实验与数值模拟
|
Abstract:
为了研究2.5D机织复合材料的压缩损伤和失效机制,验证双尺度渐进损伤有限元数值模拟方法的有效性,对这类复合材料分别沿经纱方向和纬纱方向进行了准静态压缩实验,获得了其相应的应力-应变曲线,并测定了材料的初始弹性模量和极限强度。在此基础上,利用双尺度渐进损伤有限元数值方法模拟分析了材料的压缩应力-应变响应和损伤演化行为,取得了与实验吻合较好的模拟结果。结果表明:2.5D机织复合材料在纬向压缩下的主要失效模式是纬纱的轴向压溃与断裂,可获得相对较高的压缩强度;但在经向压缩下,经纱因弯曲会承受附加弯矩作用,从而对周围基体造成挤压,故在经纱轴向断裂之前容易出现经纱之间基体的压溃和纱线之间的分层开裂,使强度降低,不利于发挥纤维的承载优势。 To investigate the damage and failure mechanisms of 2.5D woven fabric composites under compression, and verify the effectiveness of the finite element numerical simulation method with a two-scale, progressive damage model, quasi-static compression experiments were conducted on both warp and weft directional specimens to obtain the corresponding stress-strain curves. And the initial elastic modulus and ultimate strength of materials were measured. On this basis, the compressive stress-strain responses and the damage evolution behavior were simulated using the two-scale, progressive damage finite element numerical method. The results from both experiment and simulation show good agreements, and indicate that the main failure mode of 2.5D woven fabric composites in weft directional compression is the axial crush and fracture of weft yarns, from which relatively higher strength is obtained. Meanwhile, additional bending moment is added to the warp yarn under warp directional compression due to bending, which causes extrusion on surrounding matrix. Therefore, matrix fracture and delamination cracking between neighboring warp yarns easily occur before the axial fracture of warp yarns, which are not conducive to utilize the advantage of fibers in bearing load, and result in relatively lower strength. 国家自然科学基金(11072015, 11272030)
[1] | Dong W F, Zhang J Z, Xiao J. Finite element analysis of the elastic properties of 2.5D woven composites[J]. Journal of Materials Engineering, 2009(Suppl.2): 9-14 (in Chinese). 董伟锋, 张建钟, 肖军. 2.5D机织复合材料弹性性能的有限元分析[J]. 材料工程, 2009(增刊2): 9-14. |
[2] | Tserpes K I, Papanikos P, Kermanidis T H. A three-dimensional progressive damage model for bolted joints in composite laminates subjected to tensile loading[J]. Fatigue & Fracture of Engineering Materials, 2001, 24(10): 663-675. |
[3] | Matzenmiller A, Lubliner J, Taylor R L. A constitutive model for anisotropic damage in fiber-composites[J]. Mechanics of Materials, 1995, 20(2): 125-152. |
[4] | Boitier G, Vicens J, Chermant J L. Microstructure and creep of 2.5D Cf-SiC composites[J]. Journal of the European Ceramic Society, 1998, 18(13): 1835-1843. |
[5] | Boitier G, Vicens J, Chermant J L. Understanding the creep behavior of a 2.5D Cf-SiC composite-III. From mesoscale to nanoscale microstructural and morphological investigation towards creep mechanism[J]. Materials Science and Engineering: A, 2001, 313(1): 53-63. |
[6] | Wang X F, Chen G J, Zhou G M. Progressive failure analysis of 3-D woven composites under tensile condition[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(1): 1-7 (in Chinese). 王新峰, 陈国军, 周光明. 三维机织复合材料拉伸损伤[J]. 南京航空航天大学学报, 2010, 42(1): 1-7. |
[7] | Lu Z X, Zhou Y, Yang Z Y, et al. Multi-scale finite element analysis of 2.5D woven fabric composites under on-axis and off-axis tension[J]. Computational Materials Science, 2013, 79: 485-494. |
[8] | Lu Z X, Xia B, Yang Z Y. Investigation on the tensile properties of three-dimensional full five-directional braided composites[J]. Computational Materials Science, 2013, 77: 445-455. |
[9] | Chang F K, Chang K Y. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials, 1987, 21(9): 834-855. |
[10] | Hashin Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. |
[11] | Dong W F, Xiao J, Li Y. Finite element analysis of the tensile properties of 2.5 D braided composites[J]. Materials Science and Engineering: A, 2007, 457(1): 199-204. |
[12] | Li J, Xu B, Feng Z H. Properties of 2.5D braided quartz/phenolic composites[J]. Aerospace Materials & Technology, 2002(1): 35-37 (in Chinese). 李杰, 许斌, 冯志海. 2.5D石英/酚醛复合材料的性能研究[J]. 宇航材料工艺, 2002(1): 35-37. |
[13] | Yang Z Y, Feng X, Su Z, et al. Meso-structure and elastic properties of 2.5D braided composites[J]. Aerospace Materials & Technology, 2010(2): 67-71 (in Chinese). 杨振宇, 俸翔, 苏洲, 等. 2.5D 编织复合材料细观结构及弹性性能[J]. 宇航材料工艺, 2010(2): 67-71. |
[14] | Ma J Q, Xu Y D, Zhang L T, et al. Microstructure characterization and tensile behavior of 2.5D C/SiC composites fabricated by chemical vapor infiltration[J]. Scripta Materialia, 2006, 54(11): 1967-1971. |
[15] | Ma J Q, Xu Y D, Zhang L T, et al. Preparation and mechanical properties of C/SiC composites with carbon fiber woven preform[J]. Materials Letters, 2007, 61(2): 312-315. |
[16] | Tao Y Q, Jiao G Q, Wang B, et al. Experiment study and stress-strain behavior theoretical simulation on the load speed behavior of 2D and 2.5D ceramic matrix composites[J]. Journal of Materials Science & Engineering, 2009, 27(1): 12-16 (in Chinese). 陶永强, 矫桂琼, 王波, 等. 2D和2.5D编织陶瓷基复合材料加载速率效应和应力-应变行为模拟[J]. 材料科学与工程学报, 2009, 27(1): 12-16. |
[17] | Chang Y J, Jiao G Q, Tao Y Q, et al. Damage behavior of 2.5-C/SiC composite under tensile loading[J]. Journal of Inorganic Materials, 2008, 23(3): 509-514 (in Chinese). 常岩军, 矫桂琼, 陶永强, 等. 2.5D C/SiC复合材料的拉伸损伤研究[J]. 无机材料学报, 2008, 23(3): 509-514. |
[18] | Cao H J, Qian K, Sheng D X. Geometry model and experimental verification of 2.5D woven composites[J]. Journal of Textile Research, 2009, 30(5): 58-62 (in Chinese). 曹海建, 钱坤, 盛东晓. 2.5维机织复合材料的几何结构模型与验证[J]. 纺织学报, 2009, 30(5): 58-62. |
[19] | Zheng J, Wen W D, Cui H T, et al. Geometric model of 2.5 dimensional woven structures[J]. Acta Materiae Compositae Sinica, 2008, 25(2): 143-148 (in Chinese). 郑君, 温卫东, 崔海涛, 等. 2.5维机织结构复合材料的几何模型[J]. 复合材料学报, 2008, 25(2): 143-148. |
[20] | Zheng J, Wen W D, Cui H T, et al. Elastic property prediction of 2.5 dimensional woven structures[J]. Journal of Aerospace Power, 2008, 23(11): 2031-2035 (in Chinese). 郑君, 温卫东, 崔海涛, 等. 2.5维机织结构复合材料的弹性性能预测[J]. 航空动力学报, 2008, 23(11): 2031-2035. |
[21] | Zheng J, Wen W D, Cui H T, et al. Original yield of 2.5D woven composites loaded in weft[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 254-258 (in Chinese). 郑君, 温卫东, 崔海涛, 等. 2.5维机织复合材料纬向拉伸过程初始屈服准则[J]. 航空学报, 2009, 30(2): 254-258. |
[22] | Zhang L Q, Jiang Y, Guo H W, et al. Analysis and demonstration of elastic properties of 2.5D braided composites[J]. Fiber Glass, 2006(4): 1-3 (in Chinese). 张立泉, 蒋云, 郭洪伟, 等. 编织复合材料弹性性能的分析和实验验证[J]. 玻璃纤维, 2006(4): 1-3. |
[23] | The Fiber Reinforced Plastic Standardization Technical Committee. GB/T 1448—2005 Fiber-reinforced plastics composites—Determination of compressive properties[S]. Beijing: China Zhijian Publishing House, 2005 (in Chinese). 全国纤维增强塑料标准化技术委员会.GB/T 1448—2005 纤维增强塑料压缩性能实验方法[S]. 北京: 中国质检出版社, 2005. |
[24] | Kushch V I, Shmegera S V, Mishnaevsky J L. Meso cell model of fiber reinforced composite: interface stress statistics and debonding paths[J]. International Journal of Solids and Structures, 2008, 45(9): 2758-2784. |
[25] | Tserpes K I, Labeas G, Papanikos P, et al. Strength prediction of bolted joints in graphite/epoxy composite laminates[J]. Composites Part B: Engineering, 2002, 33(7): 521-529. |
[26] | Chang F K, Richard A S. Failure strength of nonlinearly elastic composite laminates containing a pin loaded hole[J]. Journal of Composite Materials, 1984, 18(5): 464-477. |
[27] | Zhou Y, Lu Z X, Yang Z Y. Progressive damage analysis and strength prediction of 2D plain weave composites[J]. Composites Part B: Engineering, 2013, 47: 220-229. |
[28] | Fang G D, Liang J, Wang B L. Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension[J]. Composite Structures, 2009, 89(1): 126-133. |
[29] | Duvaut G, Lions J L, John C W. Inequalities in mechanics and physics[M]. Berlin: Springer-Verlag, 1976. |
[30] | Hahn H T, Tsai S W. Nonlinear elastic behavior of unidirectional composite laminate[J]. Journal of Composite Materials, 1973, 7(1): 102-110. |