|
- 2015
TiC(30vol%)/Cu-Al2O3复合材料热变形及动态再结晶
|
Abstract:
采用真空热压-内氧化烧结法制备了TiC(30vol%)/Cu-Al2O3复合材料,测试其基本性能,对其微观组织进行了观察分析。利用Gleeble-1500D热力模拟试验机,在变形温度450~850 ℃、应变速率0.001~1 s-1、变形量50%的条件下,对TiC(30vol%)/Cu-Al2O3进行了热压缩变形试验。通过对流变应力进行分析和计算,构建了该复合材料的本构方程及动态再结晶临界应变模型。利用加工硬化率-应变曲线的拐点和对应偏导曲线最小值的判据,建立了动态再结晶临界应变与Zener-Hollomon参数之间的函数关系。结果表明:TiC(30vol%)/Cu-Al2O3复合材料的真应力-真应变曲线以动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;计算得出该复合材料的热变形激活能为211.384 kJ/mol。 The TiC(30vol%)/Cu-Al2O3 composites were successfully prepared by vacuum thermal pressed-internal oxidation sintering process. The basic properties and microstructure of the composites were tested and observed. The hot compression deformation tests of TiC(30vol%)/Cu-Al2O3 composites were conducted at deformation temperature of 450-850 ℃, strain rate of 0.001-1 s-1 and deformation amount of 50% by Gleeble-1500D simulator. By analyzing and caculating the flow stress, constitutive equation and model of dynamic recrystallization critical strain were constructed. By the inflection point of work hardening rate-strain curves and the minimum value criterion of corresponding partial derivative curves, the function relationship between dynamic recrystallization critical strain and Zener-Hollomon parameter was constructed. The results show that the softening mechanism of dynamic recrystallization is a feature of true stress-true strain curves of TiC(30vol%)/Cu-Al2O3 composites, and the peak stress increases with the decrease of deformation temperature or the increase of strain rate. The calculating thermal deformation activation energy is 211.384 kJ/mol. 国家自然科学基金(51101052)
[1] | Qin S G, Zhou W P, Xiong N, et al. Progress in TiC/Cu composite materials research[J]. Powder Metallurgy Industry, 2006, 16(2): 38-42 (in Chinese). 秦思贵, 周武平, 熊宁, 等. TiC/Cu复合材料的研究进展[J]. 粉末冶金工业, 2006, 16(2): 38-42. |
[2] | Luo X, Yang Y Q, Wang C, et al. C/Ti/Cu interfacial reaction in SiCf/Cu composites[J]. Rare Metals, 2011, 30(4): 396-401. |
[3] | Xiao G Q, Duan F, Zhang G, et al. Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of TiC-Cu cermets[J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2007, 14(6): 568-575. |
[4] | Wu G M, Yin Y J. Examination on the rigid plastic meso-damage constitutive theory for particle reinforced composites[J]. Acta Materiae Compositae Sinica, 2005, 22(5): 16-23 (in Chinese). 吴国民, 殷雅俊. 颗粒增强复合材料刚塑性细观损伤本构模型的验证[J]. 复合材料学报, 2005, 22(5): 16-23. |
[5] | Pollak E I, Jonas J J. A one-parameter approach to determining the critical conditions for theinitiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127-136. |
[6] | Pollak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation [J]. ISIJ International, 2003, 43(5): 684-691. |
[7] | Ouyang D L, Lu S Q, Cui X, et al. Dynamic recrystallization of titanium alloy TA15 during β hot process at different strain rates[J]. Rare Metal Materials and Engineering, 2011, 40(2): 325-330 (in Chinese). 欧阳德来, 鲁世强, 崔霞, 等. 不同应变速率TA15钛合金β形变过程中动态再结晶行为[J]. 稀有金属材料与工程, 2011, 40(2): 325-330. |
[8] | Senthilkumar V, Balaji A, Narayanasamy R. Analysis of hot [JP+4]deformation behavior of Al5083-TiC nanocomposite using[JP][LL][KG3]constitutive and dynamic material models[J]. Materials and Design, 2012, 37: 102-108. |
[9] | Yang Z Q, Liu Y, Tian B H, et al. Critical conditions of dynamic recrystallization of TiC/Cu-Al2O3 composites[J]. Acta Materiae Compositae Sinica, 2014, 31(4): 963-969 (in Chinese). 杨志强, 刘勇, 田保红, 等. TiC/Cu-Al2O3复合材料动态再结晶临界条件[J]. 复合材料学报, 2014, 31(4): 963-969. |
[10] | Bai P C, Dai X J, Zhao C W, et al. Structural features of the interfaces within Al2O3/Al composite[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 88-92 (in Chinese). 白扑存, 代雄杰, 赵春旺, 等. Al2O3/Al复合材料的界面结构特征[J]. 复合材料学报, 2008, 25(1): 88-92. |
[11] | Tian B H, Liu P, Song K X, et al. Microstructure and properties at elevated temperature of a nano-Al2O3 particles dispersion-strengthened copper base composite[J]. Materials Science and Engineering: A, 2006, 435: 705-709. |
[12] | Liu Y, Sun Y W, Tian B H, et al. Strengthening mechanism and hot deformation behavior of 20%Mo/Cu-Al2O3 composite[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(3): 750-756 (in Chinese). 刘勇, 孙永伟, 田保红, 等. 20%Mo/Cu-Al2O3复合材料的强化机理及热变形行为[J]. 中国有色金属学报, 2013, 23(3): 750-756. |
[13] | Zou D N, Chen Z Y, Han Y, et al. Study on constitutive models of 22Cr-5Ni-3Mo-N high alloy steel for high temperature deformation[J]. Chinese Journal of Materials Research, 2011, 25(6): 591-597 (in Chinese). 邹德宁, 陈治毓, 韩英, 等. 22Cr-5Ni-3Mo-高合金钢高温变形本构模型研究[J]. 材料研究学报, 2011, 25(6): 591-597. |
[14] | Jonas J J, Sellars C M, Tegart M. Strength and structure under hot-working conditions[J]. International Materials Reviews, 1969, 14(1): 1-24. |
[15] | Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Science and Heat Treatment, 1979, 13(3): 187-194. |
[16] | Glover G, Sellars C M. Recovery and recrystallization during high temperature deformation of α-iron [J]. Transactions of Materials and Heat Treatment, 1973, 4(3): 765-776. |
[17] | Tian J, Li W F, Han L F, et al. Creep constitutive equation of Al2O3-SiO2(sf)/AZ91D magnesium matrix composite[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 135-141 (in Chinese). 田君, 李文芳, 韩立发, 等. Al2O3-SiO2(sf)/AZ91D镁基复合材料蠕变本构方程[J]. 复合材料学报, 2010, 27(6): 135-141. |
[18] | Rathod S, Modi O P, Prasad B K, et al. Cast in situ Cu-TiC composites: Synthesis by SHS route and characterization[J]. Materials Science and Engineering A, 2009, 502: 91-96. |
[19] | Ouyang D L, Lu S Q, Huang X, et al. Critical conditions of dynamic recrystallization during deformation of β area in TA15 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(8): 1539-1544 (in Chinese). 欧阳德来, 鲁世强, 黄旭, 等. TA15钛合金β区变形动态再结晶的临界条件[J]. 中国有色金属学报, 2010, 20(8): 1539-1544. |