|
- 2015
蒙脱土/聚丙烯复合材料结晶形态及耐电树枝化特性
|
Abstract:
为了改善聚丙烯(PP)的耐电树枝性能, 以有机化蒙脱土(MMT)作为纳米填充相, 马来酸酐接枝聚丙烯(PP-g-MAH)作为相容剂, 采用熔融插层一步法和二步法制备了MMT/PP复合材料。分别利用偏光显微镜(PLM)及差示扫描量热(DSC)曲线观测了PP及MMT/PP复合材料的结晶形态及结晶过程, 采用SEM考察了MMT在复合材料中的分散状态。通过电树枝引发实验, 探究了制备方法及结晶形态对复合材料耐电树枝化性能的影响。实验结果表明: 采用熔融插层二步法制备的MMT/PP复合材料, 其无机相分散较均匀, 结晶尺寸减小, 结晶结构由球晶转变为片晶的堆叠, 结晶度提高了约2.7%;在PP试样中, 电树枝长度较长且分枝较少, 而MMT/PP试样中电树枝转变为长度较小且分枝较多的稠密结构。 In order to improve the electrical tree resistance of polypropylene (PP), montmorillonite (MMT)/PP composites were prepared by one-step and two-step melting intercalation processes, in which the organic MMT as the nanophase and the maleic anhydride grafted polypropylene (PP-g-MAH) as the compatibilizer. The crystallization morphology and crystallization process of PP and MMT/PP composites were studied by polarizing microscopy (PLM) and differential scanning calorimetry (DSC) curves. SEM was used to observe the dispersion state of MMT in composites. The influence of preparation process and crystallization morphology on property of electrical tree resistance was investigated by electrical tree initiating test. The test results indicate that the inorganic phase disperses more uniformly, crystallization size decreases and the spherulites become into lamellar crystallization stacks in MMT/PP composites which was prepared by two-step melting intercalation process, and the degree of crystallinity increases about 2.7%. The length of electrical trees are longer and it has less divarication in PP specimen, and characteristics of shorter and denser shape with more divarication are found in PP/MMT samples. 国家自然科学基金(51077029); 黑龙江省研究生创新科研项目(YJSCX2012-080HLJ)
[1] | Kim W J, Kim S H, Kim H J, et al. The dundamental characteristics of PPLP as insulating material for HTS DC cable[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 5401704. |
[2] | Liang M X, Zhang X H, Song Z H, et al. The effect of compound nucleating agent on the crystallization behavior of polypropylene[J]. Acta Polymerica Sinica, 2008(10): 985-992 (in Chinese). 梁明霞, 张晓红, 宋志海, 等. 复合成核剂对聚丙烯结晶行为的影响[J]. 高分子学报, 2008(10): 985-992. |
[3] | Rezaeifar F, Suzuki Y, Kumada A, et al. Characterization of partial discharge in composite insulation system with PPLP for HTS cable[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(6): 1747-1753. |
[4] | Liao R J, Zhou T C, Liu L, et al. Experimental reserch on electrical treeing and partial discharge characteristics of cross-linked polyethylene power cables[J]. Proceedings of the CSEE, 2011, 31(28): 136-143 (in Chinese). 廖瑞金, 周天春, 刘玲, 等. 交联聚乙烯电力电缆的电树枝化试验及其局部放电特征[J]. 中国电机工程学报, 2011, 31(28): 136-143. |
[5] | Sarathi R, Nandini A, Tanaka T. Understanding electrical treeing phenomena in XLPE cable insulation under harmonic AC voltages adopting UHF technique[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3): 903-909. |
[6] | Chen X R, Xu Y, Liu Y, et al. Study on conducting characteristics of electrical trees in cross-linked polyethylene cable insulation[J]. Acta Physica Sinica, 2012, 61(8): 416-425 (in Chinese). 陈向荣, 徐阳, 刘英, 等. 交联聚乙烯电缆绝缘材料中电树枝的导电特性研究[J]. 物理学报, 2012, 61(8): 416-425. |
[7] | Yang R C, Wu L, Niu S R, et al. Thermal oxidative aging kinetics of montmorillonite/polypropylene nanocomposites[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 70-75 (in Chinese). 杨瑞成, 吴量, 牛绍蕊, 等. 纳米蒙脱土/聚丙烯复合材料热氧老化动力学[J]. 复合材料学报, 2010, 27(6): 70-75 . |
[8] | Li L Z, Zhang X Q, Luo F L. Structure and properties of i PP/modified nano-CaCO3 composites[J]. Acta Polymerica Sinica, 2011(10): 1218-1223 (in Chinese). 李良钊, 张秀芹, 罗发亮. 改性纳米碳酸钙-聚丙烯复合材料的结构与性能研究[J]. 高分子学报, 2011(10): 1218-1223. |
[9] | Zhou L J, Zhao Y, Yang M S, et al. Investigation on degradation of polypropylene/stabilizers composites irradiated by gamma rays[J]. Spectroscopy and Spectral Analysis, 2010, 30(1): 109-113 (in Chinese). 周丽娟, 赵莹, 阳明书, 等. 聚丙烯/有机改性蒙脱土纳米复合材料的光氧化降解研究[J]. 光谱学与光谱分析, 2010, 30(1): 109-113. |
[10] | Fuse N, Ohki Y, Tanaka T. Comparison of nano-structuration effects in polypropylene among four typical dielectric properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3): 671-677. |
[11] | Takala M, Ranta H, Nevalainen P, et al. Dielectric properties and partial discharge endurance of polypropylene-silica nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(4): 1259-1267. |
[12] | Kim E S, Jeon C J. Dependence of dielectric properties on the crystallinity of ceramic/polymer Composites[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2011, 58(9): 1939-1946. |
[13] | Zhang L, Chen J N, Liu J, et al. Organic modification and characterization of Na-montmorillonite[J]. Acta Materiae Compositae Sinica, 2009, 26(5): 93-99 (in Chinese). 张林, 陈介南, 刘进, 等. 钠基蒙脱土的有机改性及其表征[J]. 复合材料学报, 2009, 26(5): 93-99 . |
[14] | Yan W, Qin S H, Yu J, et al. Effects of organic montmorillonite on morphology and mechanical properties of acrylonitrile-butadiene-styrene (ABS)-polyamide 6 (PA6) blends[J]. Acta Materiae Compositae Sinica, 2010, 27(1): 37-42 (in Chinese). 严伟, 秦舒浩, 于杰, 等. 有机蒙脱土对ABS-PA6共混物形态结构与力学性能的影响[J]. 复合材料学报, 2010, 27(1): 37-42. |
[15] | Gao J G, Zhang H, Li L L, et al. Study on space charge characteristics of XLPE/O-MMT nanocomposites[J]. Acta Polymerica Sinica, 2013(1): 126-133 (in Chinese). 高俊国, 张豪, 李丽丽, 等. 交联聚乙烯/蒙脱土纳米复合物空间电荷特性研究[J]. 高分子学报, 2013(1): 126-133. |
[16] | Shah K S, Jain R C, Shrinet V, et al. High density polyethylene (HDPE) clay nanocomposite for dielectric applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(3): 853-861. |
[17] | Bao S P, Liang G D, Tjong S C. Positive temperature coefficient effect of polypropylene/carbon nanotube/montmorillonite hybrid nanocomposites [J]. IEEE Transactions on Nanotechnology, 2009, 8(6): 729-736. |
[18] | Zhang H Z, Li J, Liang Y, et al. Growth properties of the electrical trees in LDPE-MMT nano-composites[J]. Proceedings of the CSEE, 2010, 30(31): 137-142 (in Chinese). 章华中, 李剑, 梁勇, 等. 低密度聚乙烯-蒙脱土纳米复合材料的电树枝生长特性[J]. 中国电机工程学报, 2010, 30(31): 137-142. |
[19] | Zhang X H, Gao J G, Zhang J M, et al. Characteristics of microstructure and electrical treeing in PE/MMT nanocomposites[J]. Transactions of China Electrotechnical Society, 2009, 24(12): 1-5, 31 (in Chinese). 张晓虹, 高俊国, 张金梅, 等. 聚乙烯/蒙脱土纳米复合物的显微结构及其树枝化性能[J]. 电工技术学报, 2009, 24(12): 1-5, 31. |
[20] | Zheng J Z, Zhou X P, Xie X L. Non-isothermal crystallization kinetics of polypropylene containing silica hybrid particles as fillers[J]. Acta Materiae Compositae Sinica, 2013, 30(2): 18-23 (in Chinese). 郑净植, 周兴平, 解孝林. SiO2-聚合物杂化微球改性聚丙烯的非等温结晶动力学[J]. 复合材料学报, 2013, 30(2): 18-23. |
[21] | Yin J H, Mo Z S. Modern polymer physics (2)[M]. Beijing: Science Press, 2003: 620-621 (in Chinese). 殷敬华, 莫志深. 现代高分子物理学(下册)[M]. 北京: 科学出版社, 2003: 620-621. |
[22] | Choi J W, Cheon H G, Choi J H, et al. A study on insulation characteristics of laminated polypropylene paper for an HTS cable[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1280-1283. |
[23] | Alapati S, Thomas M J. Electrical treeing and the associated PD characteristics in LDPE nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(2): 697-704. |
[24] | Muratoglu O K, Argon A S, Cohen R E, et al. Toughening mechanism of rubber-modified polyamides[J]. Polymer, 1995, 36(5): 921-930. |
[25] | Zhu C S. Polymer structure analysis[M]. Beijing: Science Press, 2004: 182-183 (in Chinese). 朱诚身. 聚合物结构分析[M]. 北京: 科学出版社, 2004: 182-183. |