|
- 2015
圆-方异形截面复合材料管件物能量吸收机制
|
Abstract:
圆形截面复合材料管件物的能量吸收性能比方形截面管件物更加优越, 但具有平整表面的方形管件物更容易与其他部件相装配, 即方管在实际运用中更具优势。结合圆形与方形管件物的各自优势, 以碳纤维为增强体, 环氧树脂为基体, 利用编织成型方法以及真空辅助树脂传递成型技术制备出编织角度为15°和60°的3类复合材料圆-方形管件物, 编号为T15-15、T15-60及T60-60。通过准静态压缩实验研究了3类管件物的能量吸收性能, 发现通过合理的编织角设计, 可以利用周向纤维限制轴向中央裂纹的扩展, 使复合材料内部更多的纤维发生断裂, 从而提高纤维增强复合材料管件物的能量吸收性能。最终制备了集高能量吸收性能与易装配性于一身的圆-方异形截面复合材料管件物。 The energy absorption properties of composite tubes with circle cross-section are found superior to tubes with square cross-section, while the square tubes with plane surfaces are easier to combine with other parts in the assembly process, which means square tubes have advantages in practical uses. The advantages of both circle and square tubes were combined, carbon fiber and epoxy resin were used as reinforcement and matrix, respectively. Three types of circular-square composite tubes code T15-15, T15-60 and T60-60 with different braiding angles including 15° and 60°, were manufactured with braiding technology and molded by Vacuum Assisted Resin Transfer Molding technology. After researching the properties of energy absorption through quasi-static compression test, it was found that through the reasonable design of braiding angle, circumferential fiber can prevent the spreading out of axial centre cracks, which could improve the energy absorption properties of fiber reinforced composite tubes for the fracture of extra fiber in the composits. The circular-square irregular fiber reinforced composite tubes with high energy absorption and easy-assemble properties were manufactured ultimately. 国家青年自然科学基金(51302036); 高等学校博士学科点专项科研基金(20130075120006)
[1] | Mamalis A G, Manolakos D E, Ioannidis M B, et al. On the response of thin-walled CFRP composite tubular components subjected to static and dynamic axial compressive loading: experimental[J]. Composite Structures, 2005, 69(4): 407-420. |
[2] | Mamalis A G, Manolakos D E, Ioannidis M B, et al. The static and dynamic axial collapse of CFRP square tubes: Finite element modelling[J]. Composite Structures, 2006, 74(2): 213-225. |
[3] | Farley G L, Jones R M. Prediction of the energy-absorption capability of composite tubes[J]. Journal of Composite Materials, 1992, 26(3): 388-404. |
[4] | Yang Y Q, Uozumi T, Nakai A, et al. A study of applicability of fiber reinforced plastic as energy absorption member[J]. Proceedings of Automotive Technology, 2006, 37(4): 203-208 (in Japanese). 陽玉球, 魚住忠司, 仲井朝美, 等. FRPのエネルギー吸収部材への応用に関する研究[J]. 自動車技術会論文集, 2006, 37(4): 203-208. |
[5] | Ramakrishna S, Hamada H. Energy absorption characteristics of crash worthy structural composite materials[J]. Key Engineering Materials, 1997, 141: 585-622. |
[6] | Thornton P H, Harwood J J, Beardmore P. Fiber-reinforced plastic composites for energy absorption purposes[J]. Composites Science and Technology, 1985, 24(4): 275-298. |
[7] | Chen Y G, Yi X S, Xu Y H, et al. Static energy absorption characteristics of Carbon-Epoxy tubes[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(2): 246-249 (in Chinese). 陈永刚, 益小苏, 许亚洪, 等. Carbon-Epoxy 圆管件的静态吸能特征[J]. 航空学报, 2005, 26(2): 246-249. |
[8] | Hull D. A unified approach to progressive crushing of fibre-reinforced composite tubes[J]. Composites Science and Technology, 1991, 40(4): 377-421. |
[9] | Farley G L, Jones R M. Crushing characteristics of composite tubes with "near-elliptical" cross sections[J]. Journal of Composite Materials, 1992, 26(12): 1741-1751. |
[10] | Kindervater C M. Energy absorption of composites as an aspect of aircraft structural crash-resistance[M]//Developments in the Science and Technology of Composite Materials. Berlin: Springer Netherlands, 1990: 643-651. |
[11] | Mamalis A G, Yuan Y B, Viegelahn G L. Collapse of thin-wall composite sections subjected to high speed axial loading[J]. International Journal of Vehicle Design, 1992, 13(5-6): 564-579. |
[12] | Yang Y, Nishikawa Y, Nakai A, et al. Effect of cross-sectional geometry on the energy absorption capability of unidirectional carbon fiber reinforced composite tubes[J]. Science and Engineering of Composite Materials, 2008, 15(4): 249-264. |
[13] | Thornton P H, Edwards P J. Energy absorption in composite tubes[J]. Journal of Composite Materials, 1982, 16(6): 521-545. |