全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

三维织造层间增强的纤维棒复合材料细观结构模型及力学性能有限元模拟
Microscopic structure model and finite element simulation of mechanical properties of fiber-bar composites reinforced by three dimensional weaving

DOI: 10.13801/j.cnki.fhclxb.20140408.002

Keywords: 纤维棒,织造复合材料,细观结构,弹性性能,有限元分析
fiber-bar
,weaving composites,microscopic structure,elastic properties,finite element analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对复合材料层间增强的需求, 提出了一种三维织造层间增强的纤维棒复合材料几何结构, 建立了0°/90°、45°/135°及 0°/90°/45°/135° 3种织造方案下的复合材料单胞有限元模型, 该模型能较为真实地反映织造物内纤维束与纤维棒的交织特征。通过施加周期性位移边界条件, 利用该模型采用有限元方法得到了3种织造方案下复合材料的等效弹性性能参数, 讨论了复合材料弹性性能与织造方案和纱线填充因子的关系, 分析了在单向拉伸载荷下3种织造方案单胞的细观应力场分布, 制作了实体模型, 进行了相关实验。结果表明: 单胞有限元模型的模拟结果与实验结果吻合较好, 织造复合材料各弹性常数对纱线填充因子变化的敏感度不同, 不同织造方案的复合材料具有不同的力学性能特征, 其主要影响因素为纤维束在复合材料内部的排列方式。给出了3种织造模型单胞的应力场分布, 为三维织造层间增强的纤维棒复合材料的结构优化提供了依据。 Aiming at the requirement of interlaminar reinforcing of composites, the geometrical structure of fiber-bar composites reinforced by three dimensional weaving was proposed. Three single-cell finite element models based on 0°/90°, 45°/135° and 0°/90°/45°/135° weaving schemes were presented respectively, which can really reflect the mutual squeezing of fiber bundles and fiber-bars in weaving fabrics. Coupled with the periodical displacement boundary condition, the equivalent elastic property parameters of composites based on three different weaving schemes were predicted by the single-cell finite element model. The relationship of elastic properties of composites with weaving scheme and yarn packing factor were studied. The microscopic stress field distributions of single cell based on three different weaving schemes under uniaxial tensile load were analyzed. Several qualified models were made and relevant tests were performed. Results indicate that simulation results obtained by single-cell finite element model make well agreement with the experimental results. The yarn packing factor makes different effect on the elastic constants of the weaving composites. The mechanical properties of composites also vary as the difference of weaving schemes, which mainly result from the arrangement of fiber bundles inside fabrics based on different weaving schemes. The stress field distributions of three weaving single-cell models were exhibited, which provide basis for the fabrics optimization of the fiber-bar composites reinforced by three dimensional weaving. 国家自然科学基金(51035003)

References

[1]  Lu Z X, Wang C Y, Xia B, et al. Effect of interfacial properties on the uniaxial tensile behavior of three-dimensional braided composites[J]. Computational Materials Science, 2013, 79: 547-557.
[2]  Yu X G, Cui J Z. The prediction on mechanical properties of 4-step braided composites via two-scale method[J]. Composites Science and Technology, 2007, 67(3-4): 471-480.
[3]  Lu Z X, Xia B, Yang Z Y. Investigation on the tensile properties of three-dimensional full five-directional braided composites[J]. Computational Materials Science, 2013, 77: 445-455.
[4]  Miravete A, Bielsa J M, Chiminelli A. et al. 3D mesomechanical analysis of there-axial braided composite materials[J]. Composites Science and Technology, 2006, 66(15): 2954-2964.
[5]  Shan Z D, Liu F, Qiao J J, et al. 3D weaving forming technology and equipment for composites [C]//International Conference on Advanced Technology of Design and Manufacture. Beijing: China Association of Machinery Manufacturing Technology, 2011: 3-5.
[6]  Xu K, Xu X W.On the microstructure model of four-step 3D rectangular braide composites[J]. Acta Materiae Compositae Sinica, 2006, 23(5): 154-160 (in Chinese). 徐焜, 许希武. 四步法三维矩形织造复合材料的细观结构模型[J]. 复合材料学报, 2006, 23(5): 154-160.
[7]  Zhang C, Xu X W, Guo S X. Microstructure model and finite element analysis of mechanical properties of 2D 1×1 biaxial braided composites[J]. Acta Materiae Compositae Sinica, 2011, 28(6): 215- 222 (in Chinese). 张超, 许希武, 郭树祥. 二维二轴1×1织造复合材料的细观结构模型及力学性能有限元分析[J]. 复合材料学报, 2011, 28(6): 215-222.
[8]  Chamis C C. Mechanics of composites materials: past, present and future[J]. Journal of Composites Technology and Research, 1989, 11(1): 3-14.
[9]  State Administration of Quality Supervision Inspection and Quarantine of China. GB/T 1447-2005 Standard test method for tensile properties of fiber reinforced plastics[S]. Beijing: Standards Press of China, 2005 (in Chinese). 中华人民共和国国家质量监督检验检疫总局. GB/T 1447-2005 纤维增强塑料拉伸性能试验方法[S]. 北京: 中国标准出版社, 2005.
[10]  Tang Z X, Postle R. Mechanics of three-dimensional braided structures for composite materials-Part II: prediction of the elastic moduli[J]. Composite Structures , 2001, 51(4): 451-457.
[11]  Chen L, Tao X M,Choy C L. Mechanical analysis of 3-D braided composites by the finite multiphase element metheod[J]. Composites Science and Technology, 1999, 59(16): 2383.
[12]  Zhang C, Xu X W. Finite element analysis of 3D braided composites based on three unit-cells models[J]. Composite Structures, 2013, 98: 130-142.
[13]  Shokrieh M M, Mazloomi M S. A new analytical model for calculation of stiffness of three-dimensional four-directional braided composites[J]. Composite Structures , 2012, 94(3):1005-1015.
[14]  Zhu Y L, Cui H T, Wen W D, et al.Microstructure model and stiffness prediction of 3D braided composites considering yarns' cross-section variation[J]. Acta Materiae Compositae Sinica, 2012, 29(6): 154-160 (in Chinese). 朱元林, 崔海涛, 温卫东, 等. 含纤维束截面形状变化的三维织造复合材料细观模型及刚度预报[J]. 复合材料学报, 2012, 29(6): 154-160.
[15]  Fang G D, Liang J, Wang Y, et al. The effect of yarn distortion on the mechanical properties of 3D four-directional braided composites[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(4): 343-350.
[16]  Fang G D, Liang J, Wang B L. Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension[J]. Composite Structures, 2009, 89(1): 126-133.
[17]  Liu Z G, Li D Y, Zhang F, et al. Numerical prediction for the elastic properties of 3D 4-directional braided composites considering adhesive layers[J]. Acta Materiae Compositae Sinica, 2011, 28(6): 223-229 (in Chinese). 刘振国, 李东颖, 张帆, 等. 考虑纤维束间粘接层的三维四向织造复合材料弹性性能数值预测[J]. 复合材料学报, 2011, 28(6): 223-229.
[18]  Lu Z X, Wang C Y, Xia B. Finite element analysis of elastic property and thermo-physical properties of three-dimensional and full five-directional braided composites[J]. Acta Materiae Compositae Sinica, 2013, 30(3): 160-167 (in Chinese). 卢子兴, 王成禹, 夏彪. 三维全五向编织复合材料弹性性能及热物理性能的有限元分析[J]. 复合材料学报, 2013, 30(3): 160-167.
[19]  Guo Y, Wu L Z, Yang Y H, et al. Experimental investigation on tensile mechanical properties of 3D six directional braided composite[J]. Journal of Astronautics, 2012, 33(5): 669-674 (in Chinese). 郭颖, 吴林志, 杨银环, 等. 三维六向编织复合材料拉伸性能的实验研究[J]. 宇航学报, 2012, 33(5): 669-674.
[20]  Stig F, Hallstr?m S. Spatial modelling of 3D-woven textiles[J]. Composite Structures, 2012, 94(5): 1495-1502.
[21]  Sharma R, Mahajan P, Mittal R K. Elastic modulus of 3D carbon/carbon composite using image-based finite element simulations and experiments[J]. Composite Structures, 2013, 98: 69-78.
[22]  Suquet P. Elements of homogenization theory for inelastic solid mechanics[C]//Sanchez-Palencia E, Zaoui A. Homogenization Techniques for Composite Media. Berlin: Springer-Verlag, 1985: 194-275.
[23]  Tang Z X, Postle R. Mechanics of three-dimensional braided structures for composite materials-Part I: fabric structure and fibre volume fraction[J].Composite Structures, 2000, 49(4): 451-459.
[24]  Tang Z X, Postle R. Mechanics of three-dimensional braided structures for composite materials-Part III: nonlinear finite element deformation analysis[J]. Composite Structures, 2002, 55(3): 307-317.
[25]  Chen L, Tao X M, Choy C L. On the microstructure of three-dimensional braided performs[J]. Composites Science and Technology, 1999, 59(3): 391.
[26]  Lu Z X, Xia B, Wang C Y. Progressive damage simulation and strength prediction of 3D six-directional braided composites[J]. Acta Materiae Compositae Sinica, 2013, 30(5): 166-173 (in Chinese). 卢子兴, 夏彪, 王成禹. 三维六向编织复合材料渐进损伤模拟及强度预测[J]. 复合材料学报, 2013, 30(5): 166-173.
[27]  Visrolia A, Meo M. Multiscale damage modelling of 3D weave composite by asymptotic homogenization [J]. Composite Structures, 2013, 95: 105-113.
[28]  Xia Z H, Zhou C W, Yong Q L, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International Journal of Solids and Structures, 2006, 43(2): 266-278.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133