|
- 2015
ZrB2基超高温陶瓷复合材料的高温拉伸损伤行为
|
Abstract:
开展了SiC(20vol%)-石墨(15vol%)/ZrB2复合材料室温及高温拉伸性能实验, 发现高温时复合材料的拉伸强度和弹性模量有所降低, 并且具有明显的非线性特征。引入热损伤来表征弹性模量随温度的衰减规律, 利用强度统计分析方法确定单向应力状态下材料的机械损伤演化方程, 建立了材料在热力耦合条件下的高温拉伸损伤非线性本构模型。分析表明: 随着温度的升高, SiC-石墨/ZrB2复合材料的热损伤和机械损伤不断增加, 延性增强, 且脆性-延性破坏转变温度范围为1 250~1 350 ℃。 The tensile property tests of SiC(20vol%)-graphite(15vol%)/ZrB2 composites were carried out at room and high temperatures. The reduction of tensile strength and elastic modulus, and the obvious nonlinear behavior for composites were observed at high temperatures. The attenuation law of elastic modulus with temperature was characterized by introducing thermal damage. The mechanical damage evolution equation under the uniaxial stress was determined through the statistical analysis of strength, and then a high temperature tensile damage nonlinear constitutive model was presented under the thermal-mechanical coupling conditions. The results show that, with the increase of temperature, the thermal and mechanical damage of SiC-graphite/ZrB2 composites increase as well as the ductility, and the transition temperature which range from brittle fracture to ductile fracture is 1 250-1 350 ℃. 国家自然科学基金 (11325210, 0916027, 11102051)
[1] | Monti R, Stefano Fumo M D, Savino R. Thermal shielding of a reentry vehicle by ultra-high-temperature ceramic materials[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(3): 500-506. |
[2] | Wang J K, Zhou S Z. The research development of ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 1990, 7(4): 1-7 (in Chinese). 王俊奎, 周施真. 陶瓷基复合材料的研究进展[J]. 复合材料学报, 1990, 7(4): 1-7. |
[3] | Monteverde F, Bellosi A, Scatteia L. Processing and properties of ultra-high temperature ceramics for space applications[J]. Materials Science and Engineering: A, 2008, 485(1-2): 415-421. |
[4] | Bird M W, Aune R P, Thomas A F, et al. Temperature-dependent mechanical and long crack behavior of zirconium diboride-silicon carbide composite[J]. Journal of the European Ceramic Society, 2012, 32(12): 3453-3462. |
[5] | Zhang R B, Cheng X M, Fang D N, et al. Ultra-high-temperature tensile properties and fracture behavior of ZrB2-based ceramics in air above 1 500 ℃[J]. Materials and Design, 2013, 52: 17-22. |
[6] | Han W B, Zhang X H, Tai W B, et al. High temperature deformation of ZrB2-SiC-AlN ceramic composite[J]. Materials Science and Engineering: A, 2009, 515(1-2): 146-151. |
[7] | Nohut S, Lu C S. Fracture statistics of dental ceramics: Discrimination of strength distributions[J]. Ceramics International, 2012, 38(6): 4979-4990. |
[8] | Ren Z J, Peng X H, Wan L. A three-dimensional micromechanics model for damage of brittle materials based on the growth and unilateral effect of elliptic microcracks[J]. Engineering Fracture Mechanics, 2011, 78(2): 274-288. |
[9] | Maire J F, Lesne P M. A damage model for ceramic matrix composites[J]. Aerospace Science and Technology, 1997, 1(4): 259-266. |
[10] | Brencich A, Gambarotta L. Isotropic damage model with different tensile-compressive response for brittle materials[J]. International Journal of Solids and Structure, 2001, 38(34-35): 5865-5892. |
[11] | Shi J X, Liu X R, Fang T, et al. Statistical damage constitutive model for ceramics under hydraulic pressure and external force[J]. Journal of Lanzhou University: Natural Sciences, 2010, 46(2): 117-120 (in Chinese). 石建勋, 刘新荣, 方焘, 等. 液压轴压作用下陶瓷的统计损伤本构模型[J]. 兰州大学学报: 自然科学版, 2010, 46(2): 117-120. |
[12] | Sun Z G, Song Y D, Miao Y, et al. Simulation of the matrix random cracking of ceramic matrix composite by Monte Carlo model[J]. Acta Materiae Compositae Sinica, 2009, 26(4): 130-135 (in Chinese). 孙志刚, 宋迎东, 苗艳, 等. 陶瓷基复合材料基体随机开裂的损伤模拟[J]. 复合材料学报, 2009, 26(4): 130-135. |
[13] | He L F, Lu X P, Bao Y W, et al. High-temperature internal friction, stiffness and strength of Zr-Al(Si)-C ceramics[J]. Scripta Materialia, 2009, 61(1): 60-63. |
[14] | Li W G, Li D Y, Cheng T B, et al. Temperature-damage-dependent thermal shock resistance model for ultra-high temperature ceramics[J]. Engineering Fracture Mechanics, 2012, 82: 9-16. |
[15] | Opeka M M, Talmy I G, Wuchina E J, et al. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds[J]. Journal of the European Ceramic Society, 1999, 19(13-14): 2405-2414. |
[16] | Kushch V I, Sangani A S. Stress intensity factor and effective stiffness of a solid containing aligned penny-shaped cracks[J]. International Journal of Solids and Structures, 2000, 37(44): 6555-6570. |
[17] | Yu S W, Feng X Q. A micromechanics-based damage model for microcrack-weakened brittle solids[J]. Mechanics of Materials, 1995, 20(1): 59-67. |
[18] | Leplay P, Rethore J, Meille S, et al. Damage law identification of a quasi brittle ceramic from a bending test using digital image correlation[J]. Journal of the European Ceramic Society, 2010, 30(13): 2715-2725. |
[19] | Liu S Q, Xu X C. Damage analysis of brittle rock at high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(4): 408-411 (in Chinese). 刘声泉, 许锡昌. 温度作用下脆性岩石的损伤分析[J]. 岩石力学与工程学报, 2000, 19(4): 408-411. |