|
- 2015
基于纳米压痕法的埃洛石纳米管/环氧复合材料力学性能表征
|
Abstract:
采用球磨法在环氧树脂中分散了不同质量分数(0、5wt%和10wt%)的埃洛石纳米管(HNTs), 通过哌啶固化剂固化, 制备了HNTs/环氧树脂复合材料, 并利用纳米压痕法测试了HNTs/环氧树脂复合材料的弹性模量、硬度和蠕变性能。SEM和TEM观测表明: HNTs在环氧树脂中分散情况较好。纳米压痕实验结果表明: 在不牺牲HNTs/环氧树脂复合材料弹性模量、硬度以及玻璃化转变温度的基础上, HNTs明显提高了环氧树脂基复合材料的抗蠕变性能, 这主要是由于HNTs和环氧基分子链形成了新的交联结构, 增加了材料的交联密度, 刚性纳米粒子限制了环氧基分子链的活动性。 Halloysite nanotubes (HNTs) with different mass fractions, i.e. 0, 5wt% and 10wt%, were dispersed in epoxy using ball milling homogenization. And HNTs/epoxy composites were prepared using piperidine hardner. The elastic modulus, hardness and creep properties of HNTs/epoxy composites were determined using nanoindentation method. SEM and TEM observations show that HNTs are well dispersed in epoxy. Nanoindentation test results show that there is a significant increase in anti-creep properties of the epoxy matrix composites without sacrificing other properties such as elastic modulus, hardness and glass transition temperature of HNTs/epoxy composites. This is because the new network caused by interfacial bonding between HNTs and epoxy matrix chains could increase the cross linking density of materials, and the rigid nanoparticles restrict the mobility of the epoxy matrix chains. 国家自然科学基金(51210008)
[1] | Tehrani M, Safdari M, Al-Haik M S. Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite[J]. International Journal of Plasticity, 2011, 27(6): 887-901. |
[2] | Kautz C Q, Ryan P C. The 10 ? to 7 ? halloysite transition in a tropical soil sequence, costa rica[J]. Clays and Clay Minerals, 2003, 51(3): 252-263. |
[3] | Du M L, Guo B C, Jia D M. Newly emerging applications of halloysite nanotubes: A review[J]. Polymer International, 2010, 59(5): 574-582. |
[4] | Ning N Y, Yin Q J, Luo F, et al. Crystallization behavior and mechanical properties of polypropylene/halloysite composites[J]. Polymer, 2007, 48(25): 7374-7384. |
[5] | Rooj S, Das A, Thakur V, et al. Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes[J]. Materials & Design, 2010, 31(4): 2151-2156. |
[6] | Tang Y H, Ye L, Deng S Q, et al. Influences of processing methods and chemical treatments on fracture toughness of halloysite-epoxy composites[J]. Materials & Design, 2012, 42: 471-477. |
[7] | Oliver W C, Pharr G M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583. |
[8] | Rooj S, Das A, Heinrich G. Tube-like natural halloysite/fluoroelastomer nanocomposites with simultaneous enhanced mechanical, dynamic mechanical and thermal properties[J]. European Polymer Journal, 2011, 47(9): 1746-1755. |
[9] | Deng S Q, Zhang J N, Ye L. Halloysite-epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments[J]. Composites Science and Technology, 2009, 69(14): 2497-2505. |
[10] | Alamri H, Low I M. Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites[J]. Materials & Design, 2012, 42: 214-222. |
[11] | Legocka I, Wierzbicka E, Al-Zahari T, et al. Modified halloysite as a filler for epoxy resins[J]. Polish Journal of Chemical Technology, 2011, 13(3): 47-52. |
[12] | Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1): 3-20. |
[13] | Lu H, Wang B, Ma J, et al. Measurement of creep compliance of solid polymers by nanoindentation[J]. Mechanics of Time-Dependent Materials, 2003, 7(3-4): 189-207. |
[14] | Liu M X, Guo B C, Du M L, et al. Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems[J]. Nanotechnology, 2007, 18(45): 455703. |
[15] | Tang Y H, Deng S Q, Ye L, et al. Effects of unfolded and intercalated halloysites on mechanical properties of halloysite-epoxy nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(4): 345-354. |
[16] | Jia Z X, Luo Y F, Guo B C, et al. Reinforcing and flame-retardant effects of halloysite nanotubes on LLDPE[J]. Polymer-Plastics Technology and Engineering, 2009, 48(6): 607-613. |
[17] | Lai D W, Li D X, Yang J, et al. Preparation and properties of PA6 modified by phenolic resin montmorillonite and KH550 halloysite[J]. Acta Materiae Compositae Sinica, 2013, 30(4): 22-28 (in Chinese). 赖登旺, 李笃信, 杨军, 等. 酚醛-蒙脱土和 KH550-埃洛石复配改性尼龙6的制备及性能[J].复合材料学报, 2013, 30(4): 22-28. |
[18] | Ye Y P, Chen H B, Wu J S, et al. High impact strength epoxy nanocomposites with natural nanotubes[J]. Polymer, 2007, 48(21): 6426-6433. |
[19] | Fu K K, Yin Y B, Chang L, et al. Analysis on multiple ring-like cracks in thin amorphous carbon film on soft substrate under nanoindentation[J]. Journal of Physics D: Applied Physics, 2013, 46(50): 505314. |
[20] | Chang L , Zhang L C. Mechanical behaviour characterisation of silicon and effect of loading rate on pop-in: A nanoindentation study under ultra-low loads[J]. Materials Science and Engineering: A, 2009, 506(1-2): 125-129. |