全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

弹性接触颗粒状周期性结构材料力学分析的均匀化方法(Ⅰ)——局部RVE分析

, PP. 93-97

Keywords: 周期性复合材料,弹性接触,颗粒材料,均匀化方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究工作目的是建立弹性接触颗粒状组成周期性结构材料力学分析的均匀化模型。首先对具有周期性构造的弹性接触颗粒材料力学的微观(小尺度)与宏观两级均匀化方法的研究现状进行了简要回顾,进而发展了问题局部RVE分析的有限元求解技术,该方法考虑了弹性接触体的粘着界面特性,并基于参变量变分原理提出了问题求解的参数二次规划算法,为宏观均匀化分析工作打下基础。

References

[1]  Thorton C, Randall C W. In: Satake M, Jenkins T J,eds. Micromechanics of Granular Materials, Applications of Theoretical Contact Mechanics to Solid Particle System Simulation . Amsterdam: Elsevier, 1988. 133-142.
[2]  Walton O R, Braun R L. Stress calculation for assemblies of inelastic spheres in uniform shear[J]. Acta Mechanica, 1986, 63: 73-86.
[3]  Ng T T. A non-linear numerical model for soil mechanics [J]. Int J Numer Anal Methods Geomech, 1992, 16: 247-263.
[4]  Chang C S, Chang Y, Kabir M G. Micromechanical modelling for stress-strain behaviour of granular soils, part I: Theory[J]. ASCE J Geotech Engng, 1992, 118: 1959-1974.
[5]  Wren J R, Borja R I. Micromechanics of granular media, part I: Generation of overall constitutive equation for assemblies of circular disks . Comp Methods Appl Mech Engng, 1995, 127: 13-36.
[6]  钟万勰,张洪武,吴成伟. 参变量变分原理及其在工程中的应用[M]. 北京:科学出版社,1997.
[7]  Zhang H W, Zhong W X, Gu Y X. A combined parametric quadratic programming and iteration method for 3D elastic-plastic frictional contact problem analysis [J]. Comput Meths Appl Mech, 1998, 155: 307-324.
[8]  Dvorak G J, Bahei Y A, Wafa A M. Implementation of the transformation field analysis for inelastic composite materials[J]. Computational Mechanics, 1994, 14: 201-228.
[9]  Hill R. A self-consistent mechanics of composite materials[J]. J Mech Phys Solids, 1965, 13: 213-222.
[10]  Hill R. The essential structure of constitutive laws for metal composites and polycrystals[J]. J Mech Phys Solids, 1967, 15: 79-95.
[11]  Mandel J. Equations de comportement d'un systeme astoviscoplastique dont l'crouissage est d à des contraintes residuelles[M]. Paris: Acad Sci Press, 1977.257-260.
[12]  Rice J R. Constitutive equations in plasticity[M]. Cambridge : The MIT Press, 1975. 23-79.
[13]  Stolz C. In: Gittus J, Zarka J , eds. Modelling Small Deformation of Polycrystals, General relationships between micro and macro scales for the non- linear behavior of heterogeneous media . London: Elsevier, 1986. 89-115.
[14]  Suquet P M. In: Sanche-Palencia E, Zaoui A, eds. Homogenization Techniques for Composite Media , Elements of homogenization of inelastic solid mechanics . Paris: Springer-Verlag, 1987. 194-275.
[15]  Body J G, Costanzo F, Allen D H. A micromechanics approach for constructing locally averaged damage dependent constitutive equations in inelastic composites[J]. Int J Damage Mech, 1993, 2: 209-228.
[16]  Allen D H, Jones R H, Boyd J G. Micromechanical analysis of continuous fiber metal matrix composite including the effects of matrix viscoplasticity and evolving damage[J]. J Mech Phys Solids, 1994, 42: 505-529.
[17]  Ghosh S, Moorthy S. Elasto-plastic analysis of arbitrary heterogeneous materials with the Voronoi-Cell Finite Element Method[J]. Comp Meth Appl Mech Engng, 1995, 121: 373-409.
[18]  Costanzo F, Body J G, Allen D H, Micromechanics and homogenization of inelastic composite materials with growing cracks[J]. J Mech Phys Solids, 1996, 44: 333-370.
[19]  Reiter T, Dvorak G J. Micromechanical models for graded composite materials [J]. J Mech Phys Solids, 1997, 45:1281-1302.
[20]  Schrefler A B, Galvanetto U, Pellegrino C. Ohmenhaeuser F. Macroscopic effective yield surfaces taking into account microscopic behaviour . Palmer C. Proc. of IUTAM/IACM Symposium on Discretisation Methods in Structural Mechanics II . Vienna: Cambridge Press, 1997. 213-218.
[21]  Serano A A, Rodriguez-Ortiz J M. A contribution to the mechanics of heterogeneous granular media . Palmer A C. Proc. Symposium on the Role of Plasticity in Soil Mechanics . Cambridge: Cambridge Press, 1973. 215-228.
[22]  Rodriguez-Ortiz J M. Estudio del comportamiento de medios granulares heterogeneous mediante modelos discontinuous analogicosy matematicos . Madrid: Universidad Politecnica de Madrid, 1974.
[23]  Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29: 47-65.
[24]  张洪武.弹性接触颗粒状周期性结构材料力学分析的均匀化方法(Ⅱ)——宏观均匀化分析[J].复合材料学报,2001,18(4):98-102.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133