全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微波无损检测热障涂层下金属表面裂缝的参数优化

, PP. 149-153

Keywords: 微波无损检测,热障涂层,金属,裂缝,相位差

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于微波在介电材料中的传播理论及其对金属界面特性的敏感性,利用CST-微波工作室(computersimulationtechnology-microwavestudio)对微波检测热障涂层下金属的裂缝进行了仿真计算,研究了热障涂层的厚度、裂缝方向对检测结果的影响,仿真计算了热障涂层厚度为400μm、裂缝长边方向平行于矩形波导探头长边的不同宽度的裂缝。结果表明:热障涂层厚度不同时,微波检测金属表面裂缝的敏感工作频率不同;裂缝方向与波导口长边的夹角为50°~55°时检测敏感度低。裂缝宽度小于8μm时用本研究中的频率范围无法检测,裂缝宽度在10~30μm时检测效果不明显,裂缝宽度在30μm~1mm范围内,裂缝越宽微波的反射系数相位差越大。因此,在合适的工作频率下能利用微波无损检测技术对热障涂层下金属表面的裂缝进行无损检测。

References

[1]  Teixeira V. Numerical analysis of the influence of coating porosity and substrate elastic properties on the residual stresses in high temperature graded coatings[J]. Surface and Coatings Technology, 2001, 146/147: 79-84.
[2]  宫文彪, 白 晶, 刘 威, 等.掺杂纳米CeO2对ZrO2-Y2O3热障涂层隔热性能的影响[J].复合材料学报, 2009, 26(1): 96-102.
[3]  Gong Wenbiao, Bai Jing, Liu Wei, et al. Effect of doped nano-CeO2 on thermal insulation properties of ZrO2-Y2O3 thermal barrier coatings [J]. Acta Materiae Compositae Sinica, 2009, 26(1): 96-102.
[4]  张丹华, 王 璐, 郭洪波, 等.多元稀土氧化物掺杂二氧化锆基陶瓷材料的热物理性能[J].复合材料学报, 2011, 28(2): 179-184.
[5]  Zhang Danhua, Wang Lu, Guo Hongbo, et al. Thermophysical properties of multiple rare earth oxide co-doped zirconia-based ceramic materials[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 179-184.
[6]  Kerouedan J, Quéffélec P, de Blasi S, et al. Theoretical and experimental demonstration of the feasibility of metallic surface cracks detection using microwaves techniques[J]. IEEE Conference on Electromagnetic Field Computation, 2006, 12: 7-8.
[7]  Kerouedan J, Quéffélec P, Talbot P, et al. Detection of micro-cracks on metal surfaces using near-eld microwave dual-behavior resonator lters[J]. Measurement Science & Technology, 2008, 19(10): 105701-105710.
[8]  Qaddoumi N, Ranu E, McColskey J D, et al. Microwave detection of stress-induced fatigue cracks in steel and potential for crack opening determination[J]. Research in Nondestructive Evaluation, 2000, 12(2): 87-103.
[9]  Zoughi R, Kharkovsky S. Microwave and millimetre wave sensors for crack detection [J]. Fatigue Fracture Engineering Material Structure, 2008, 31: 695-713.
[10]  Kleismit R A, Kazimierczuk M K. Evanescent microwave sensor scanning for detection of sub-surface defects in wires[J]. Proceedings of the Electrical/Electronics Insulation Conference, 2001: 245-250.
[11]  Wang N, Donnell K, Castle M, et al. Microwave detection of covered surface cracks in metals[J]. AIP Conference Proceedings, 2001, 557A: 430-437.
[12]  Hughes D, Zoughi R, Austin R, et al. Near-field microwave detection of corrosion precursor pitting under thin dielectric coatings in metallic substrate[J]. AIP Conference Proceedings, 2003, 657A: 462-469.
[13]  Li Y, Tian G Y, Bowring N, et al. A microwave measurement system for metallic object detection using swept-frequency radar [J]. The International Society for Optical Engineering, 2008, 7117(13): 1-13.
[14]  CST Microwave Studio. Computer simulation technology[EB/OL].(2000-12-01)[2012-04-21]. https: //www.cst.com/Content/Products/MWS/Solvers.aspx.
[15]  Li P, Luo F, Wang X Y, et al. Effect of Y2O3 content on microwave dielectric properties of zirconia ceramics[J]. Rare Metal Materials and Engineering, 2007, 36(3): 623-626.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133