全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

木垛型壳聚糖多孔支架的磷酸化改性和仿生矿化

, PP. 76-81

Keywords: 壳聚糖,木垛型支架,磷酸化,仿生矿化,骨组织

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高壳聚糖支架材料的孔隙率及矿化程度,通过磷酸化表面改性和仿生矿化制备了磷酸化(PCSW)和生物矿化(BMCW)木垛型壳聚糖多孔支架。FTIR结果显示,壳聚糖分子中有磷酸根的引入。XRD结果表明,矿化24h后支架上形成结晶度较高的磷酸钙盐晶体,矿化48h后结晶度明显增加并形成单纯的羟基磷灰石(HA)结晶。SEM观察发现,在支架的内外表面均致密地沉积了HA晶体层。压缩强度测试结果表明,复合支架BMCW矿化48h的压缩强度为(0.54±0.005)MPa,压缩模量为(5.47±0.65)MPa,BMCW可用作非承重骨组织修复材料。

References

[1]  Falini G, Fermani S. Chitin mineralization[J]. Tissue Engineering, 2004, 10 (1/2): 1-7.
[2]  Jayakumar R, Nagahama H, Furuike T, et al. Synthesis of phosphorylated chitosan by novel method and its characterization[J]. Int J Biol Macromol, 2008, 42(4): 335-339.
[3]  Li Q L, Wu M Y, Tang L L, et al. Bioactivity of a Novel nano-composite of hydroxyapatite and chitosan-phosphorylated chitosan polyelectrolyte complex [J]. J Bioact Compat Polym, 2008, 23(6): 520-531.
[4]  Win P P, Shin-ya Y, Hong K J, et al. Formulation and characterization of pH sensitive drug carrier based on phosphorylated chitosan (PCS)[J]. Carbohydrate Polymers, 2003, 53(3): 305-310.
[5]  Amaral I F, Granja P L, Barbosa M A. Chemical modification of chitosan by phosphorylation and XPS, FT-IR and SEM study [J]. Biomater Sci Polymer Edn, 2005, 16(12): 1575-1593.
[6]  Wang X H, Ma J B, Wang Y N. Structural characterization of phosphorylated chitosan and their applications as elective additives of calcium phosphate cements[J]. Biomaterials, 2001, 22(16): 2247-2255.
[7]  Yokogawa Y, Reyes J P, Mucalo M R, et al. Growth of calcium phosphate on phosphorylated chitin fibres[J]. Mater Sci Mater Med, 1997, 8(7): 407-412.
[8]  Varma H, Yokogawa Y, Espinosa F F, et al. Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method [J]. Biomaterials, 1999, 20(9): 879-84.
[9]  Xu Z, GeeNeoh K, ChongLin C, et al. Biomimetic deposition of calcium phosphate minerals on the surface of partially demineralized dentine modified with phosphorylated chitosan[J]. J Biomed Mater Res: Part B, 2011, 98B(1): 150-159.
[10]  Li L H, Kommareddy K P, Pilz C, et al. In vitro bioactivity of bioresorbable porous polymeric scaffolds incorporating hydroxyapatite microspheres [J]. Acta Biomaterialia, 2010, 6(7): 2525-2531.
[11]  Nishi N, Ebina A, Nishimura S, et al. Highly phosphorylated derivatives of chitin, partially deacetylated chitin and chitosan as new functional polymers: Preparation and characterization [J]. Int J Biol Macromol, 1986, 8: 311-317.
[12]  Pearson F G, Marchessault R H, Liang C Y. IR spectra of crystalline polystalline polysaccharides [J]. Polym Sci, 1960, 43(141): 101-116.
[13]  Li L H, Zhao M Y, Ding S, et al. Rapid biomimetic mineralization of chitosan scaffolds with a precursor sacrificed method in ethanol/water mixed solution [J]. Express Polymer Letter, 2011, 5(6): 545-554.
[14]  Yokogawa Y, Nishizawa K, Nagata F, et al. Bioactive properties of chitin/chitosan-calcium phosphate composite materials [J]. J Sol-Gel Sci Technol, 2001, 21(1/2): 105-113.
[15]  Gupta H S, Seto J, Wagermaier W, et al. Cooperative deformation of mineral and collagen in bone at the nanoscale[J]. PNAS, 2006, 103(47): 17741-17746.
[16]  Kerin A, Wisnom M, Adams M. The vompressive strength of articular cartilage [J]. J Eng Med, 1998, 212(4): 273-280.
[17]  Seal B L, Otero T C, Panitch A. Polymeric biomaterials for tissue and organ regeneration [J]. Mater Sci Eng, 2001, 34(4/5): 147-230.
[18]  Keaveny T M, Hayes W C. Mechanical properties of cortical and trabecular bone, Bone growth [M]. Florida: CRC, 1993: 285-344.
[19]  Keaveny T M, Hayes W C. A 20-year perspective on the mechanical properties of trabecular bone[J]. Biomech Eng, 1993, 115(4): 534-542.
[20]  Zioupos P, Currey J D. Changes in the stiffness, strength, and toughness of human cortical bone with age[J]. Bone, 1998, 22(1): 57-66.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133