全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

WC-40%Al2O3复合粉末二步热压烧结

, PP. 127-134

Keywords: WC-Al2O3,二步热压烧结,正交分析,力学性能,微观组织

Full-Text   Cite this paper   Add to My Lib

Abstract:

以高能球磨机械合金化制得的WC-40%Al2O3复合粉末为原料,采用二步热压烧结法制备复合块体。首先将粉末坯体在压力条件下加热到较高的温度T1,获得相对致密的坯体结构,此时存在临界的可收缩气孔,然后将其保温在一个相对较低的温度T2,通过低温保温实现致密化。由于烧结过程温度相对较低,晶粒长大被有效抑制。采用XRD、SEM、扫描探针(SPM)对复合材料的物相、微观结构进行表征,并进行正交实验分析第二步烧结温度以及保温时间对复合块体微观组织和力学性能影响。结果表明:当T1=1600℃、T2=1450℃保温6h时,WC-40%Al2O3复合材料成形致密度达到99.03%,维氏硬度和断裂韧性分别为18.36GPa和10.4MPa·m1/2,抗弯强度为1162.1MPa.

References

[1]  程 涛, 汪重露.纳米硬质合金的研究进展[J].稀有金属与硬质合金, 2006, 34(3): 46-50. Cheng Tao, Wang Chonglu. Lastest development of nano-cemented carbide[J].Rare Metals and Cemented Carbides, 2006, 34(3): 46-50.
[2]  戚正风, 任瑞铭.国内外刀具材料发展现状[J].金属热处理, 2008, 33(1): 15-20. Qi Zhengfeng, Ren Ruiming. Development of cutting tool materials at home and abroad[J]. Heat Treatment of Metals, 2008, 33(1): 15-20.
[3]  张 立, 吴厚平.国内外硬质合金产业状况[J].硬质合金, 2009, 26(2): 122-126. Zhang Li, Wu Houping. Development of domestic and foreign cemented carbides industry[J]. Cemented Carbide, 2009, 26(2): 122-126.
[4]  Imasato S, Tokumoto K, Kitada T, et al. Properties of ultra-fine grain binderless cemented carbide‘RCCFN’[J]. Refractory Metals & Hard Materials, 1995, 13: 305-312.
[5]  Huang B, Chen L D, Bai S Q. Bulk ultrafine binderless WC prepared by spark plasma sintering[J]. Scripta Materialia, 2006, 54: 441-445.
[6]  Kim H C, Shon I J, Yoon J K, et al. Consolidation of ultra fine WC and WC-Co hard materials by pulsed current activated sintering and its mechanical properties[J]. Refractory Metals & Hard Materials, 2007, 25: 46-52.
[7]  Kim H C, Kim D K, Woo K D, et al. Consolidation of binderless WC-TiC by high frequency induction heating sintering[J].Refractory Metals & Hard Materials, 2008, 26: 48-54.
[8]  Huang S G, Vanmeensel K, Van der Biest O, Vleugels J. Binderless WC and WC-VC materials obtained by pulsed electric current sintering[J].Refractory Metals & Hard Materials, 2008, 26: 41-47.
[9]  Kim H C, Park H K, Jeong I K, et al. Sintering of binderless WC-Mo2 C hard materials by rapid sintering process[J]. Ceramics International, 2008, 34: 1419-1423.
[10]  Basu B, Venkateswaran T, Sarkar D. Pressureless sintering and tribological properties of WC-ZrO2 composites[J].European Ceramic Society, 2005, 25: 1603-1610.
[11]  Malek O, Lauwers B, Perez Y, et al. Processing of ultrafine ZrO2 toughened WC composites[J]. European Ceramic Society, 2009;29: 3371-3378.
[12]  El-Eskandarany M S. Fabrication of nanocrystalline WC and nanocomposite WC-MgO refractory materials at room temperature[J]. Alloys and Compounds, 2000, 296: 175-182.
[13]  El-Eskandarany M S. Fabrication and characterizations of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation[J]. Alloys and Compounds, 2005, 391: 228-235.
[14]  Zheng D H, Li X Q, Ai X, et al. Bulk WC-Al2O3 composites prepared by spark plasma sintering[J]. Refractory Metals & Hard Materials, 2012, 30: 51-56.
[15]  雷 燕, 熊惟皓.放电等离子烧结在金属陶瓷复合材料制备中的应用[J]. 机械工程材料, 2004, 28(6): 17-19. Lei Yan, Xiong Weihao. The research progress of spark plasma sintering for metal-ceramics composite materials[J].Materials for Mechanical Engineering, 2004, 28(6): 17-19.
[16]  Chen I W, Wang X H. Sintering dense nanocrystalline oxide ceramics without final stage grain growth[J].Nature, 2000, 404: 168-171.
[17]  Bodisova K, Sajglik P.Two-stage sintering of alumina with submicrometer grain size[J].The American Ceramic Society, 2007, 90(1): 330-332.
[18]  Wang X H, Chen P L, Chen I W. Two-step sintering of ceramics with constant grain size:Ⅰ-Y2O3[J]. American Ceramic Society, 2006, 89: 431-437.
[19]  Wang X H, Deng X Y, Bai H L, et al. Two-step sintering of ceramics with constant grain-size:Ⅱ-BaTiO3 and Ni-Cu-Zn ferrite[J].American Ceramics Society, 2006, 89: 438-443.
[20]  Mehdi Mazaheri, Zahedi A M, Sadrnezhaad S K. Two-step sintering of nanocrystalline ZnO compacts: Effect of temperature on densification and grain growth[J]. American Ceramics Society, 2007, 91(1): 56-63.
[21]  Qu H X, Zhu S G, Li Q. Influence of sintering temperature and holding time on the densification, phasetransformation, microstructure and properties of hot pressing WC-40vol% Al2O3 composites[J]. Ceramics International, 2012, 38: 1371-1380.
[22]  黄培云.粉末冶金原理[M].北京: 冶金工业出版社, 1997. Huang Peiyun. The principle of powder metallurgy[M]. Beijing: Metallurgical Industry Press, 1997.
[23]  施剑林.固相烧结Ⅱ——粗化与致密化关系及物质传输途径[J]. 硅酸盐学报, 1997, 25(6): 657-668. Shi Jianlin. Solid sinteringⅡ-The relationship between coarsing and densification and mass transport way[J].The Chinese Ceramic Society, 1997, 25(6): 657-668.
[24]  Hynes A P, Doremus R H, Siegel R W. Sintering characteristics of nanocrystalline zinc oxide[J]. American Ceramic Society, 2002, 85(8): 1979-1987.
[25]  Li J, Ye Y. Densification and grain growth of Al2O3 nanoceramics during pressureless sintering[J]. America Ceramic Society, 2006, 89(1): 139-143.
[26]  关振铎, 张中太, 焦金生.无机材料物理性能[M].北京: 清华大学出版社, 1992. Guan Zhenduo, Zhang Zhongtai, Jiao Jinsheng. Physical properties of inorganic materials[M]. Beijing: Tsinghua University Press, 1992.
[27]  Kang S J L. Sintering kinetics at final stage sintering: Model calculation and map construction[J]. Acta Materialia, 2004, 52: 4573-4578.
[28]  陈 勇, 吴玉程. La2O3-TiC/W复合材料组织结构与力学性能[J]. 复合材料学报, 2008, 25(5): 1-7. Chen Yong, Wu Yucheng. Structure and mechanical properties of La2O3-TiC/W composites[J]. Acta Materiae Compositae Sinica, 2008, 25(5): 1-7.
[29]  许崇海, 孙德明. 多相复合陶瓷刀具材料残余热应力的有限元模拟[J]. 复合材料学报, 2001, 18(3): 91-96. Xu Chonghai, Sun Deming. Finite element modeling of the residual thermal stresses in multiphase composite ceramic tool material[J]. Acta Materiae Compositae Sinica, 2001, 18(3): 91-96.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133