全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

石墨烯气凝胶/环氧树脂复合材料的制备及导电性能

, PP. 1-6

Keywords: 石墨烯气凝胶,溶胶-凝胶法,环氧树脂,复合材料,电导率

Full-Text   Cite this paper   Add to My Lib

Abstract:

以氧化石墨烯为前驱体,通过溶胶-凝胶法制备了石墨烯气凝胶(GA),然后通过超声混合的方式将GA与环氧树脂(EP)复合,制备了GA/EP复合材料。利用扫描电镜、N2吸附测试、X射线光电子能谱和X射线衍射对GA的结构进行了表征,并研究了添加不同质量分数的GA对GA/EP复合材料的热性能和导电性能的影响。结果表明,GA具有丰富的孔结构,其骨架是由石墨烯无规则堆积在一起形成的三维网格结构。经过高温热还原处理后,GA的比表面积增加到731.84m2·g-1,组成其骨架的石墨烯的层间距缩小至0.347nm,且绝大部分的含氧基团已经被除去。DMA和电导率测试结果表明,随着GA质量分数的增加,GA/EP复合材料的玻璃化转变温度呈现先升高后降低的变化趋势,而其电导率则呈现逐渐增加的趋势,逾渗阈值在0.05%~0.3%之间。

References

[1]  Lau K T, Lu M, Lam C K, et al. Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: The role of solvent for nanotube dispersion[J]. Composites Science and Technology, 2005, 65: 719-725.
[2]  邱 军, 陈典兵. 碳纳米管及碳纤维增强环氧树脂复合材料研究进展[J]. 高分子通报, 2010(2): 9-15. Qiu Jun, Chen Dianbing. Research progress on carbon nanotubes and carbon fibers reinforced epoxy resin composites[J]. Polymer Bulletin, 2010(2): 9-15.
[3]  季小勇, 李 惠, 欧进萍. 炭黑分散状态对炭黑/环氧树脂导电复合材料电阻率和力电性能的影响[J]. 复合材料学报, 2009, 26(5): 39-46. Ji Xiaoyong, Li Hui, Ou Jinping. Influence of the dispersion of carbon black on the resistivity and electromechanical properties of carbon black filled epoxy matrix conductive composite[J]. Acta Materiae Compositae Sinica, 2009, 26(5): 39-46.
[4]  卫保娟, 郑伟玲, 肖 潭, 等. 混杂功能化多壁碳纳米管/环氧树脂复合材料的制备及性能[J]. 复合材料学报, 2011, 28(5): 27-33. Wei Baojuan, Zheng Weiling, Xiao Tan, et al. Preparation and properties of hybrid functionalized multi-walled carbon nanotube/epoxy resin composite[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 27-33.
[5]  马传国, 于英俊. 碳纳米管的偶联剂修饰及其在环氧树脂复合材料中的应用[J]. 复合材料学报, 2010, 27(3): 23-28. Ma Chuanguo, Yu Yingjun. Coupling agent modification of carbon nanotubes and their applications for epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2010, 27(3): 23-28.
[6]  Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials[J]. Small, 2010, 6: 711-723.
[7]  Stoller M D, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502.
[8]  Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene[J]. Nature Nanotechnology, 2008, 3(8): 491-495.
[9]  Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[10]  Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8: 902-907.
[11]  Zhang X T, Sui Z Y, Xu B, et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources[J]. Journal of Materials Chemistry, 2011, 21: 6494-6497.
[12]  Hummers J W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemistry Society, 1958, 80: 1339.
[13]  Gao J, Liu F, Liu Y L, et al. Environment-friendly method to produce graphene that employs vitamin C and amino acid[J]. Chemistry of Materials, 2010, 22: 2213-2218.
[14]  Menard K P. Dynamic mechanical analysis: A practical introduction[M]. Boca Raton: Taylor & Francis, 2008.
[15]  Stauffer D, Aharony A. Introduction to percolation theory[M]. London: Taylor & Francis, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133