Huang H, Talreja R. Effect of void geometry on elastic properties of unidirectional fiber reinforced composites [J]. Composites Science and Technology, 2005, 65(13): 1964-1981.
[2]
Park C H, Lebel A, Saouab A, et al. Modeling and simulation of voids and saturation in liquid composite molding processes [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(6): 658-668.
[3]
Hayward J S, Harris B. Effect of vacuum assistance in resin transfer moulding [J]. Composites Manufacturing, 1990, 1(3): 161-166.
[4]
Lundstr?m T S, Gebart B R. Influence from process parameters on void formation in resin transfer molding [J]. Polymer Composites, 1994, 15(1): 25-33.
[5]
Patel N, Lee L J. Effect of fiber mat architecture on void formation and removal in liquid composite molding [J]. Polymer Composites, 1995, 16(5): 386-399.
[6]
Binetruy C, Hilaire B, Pabiot J. Tow impregnation model and void formation mechanisms during RTM [J]. Journal of Composites Materials, 1998, 32(3): 223-245.
[7]
Kang M K, Lee W I, Hahn H T. Formation of microvoids during resin-transfer molding process [J]. Composites Science and Technoloy, 2000, 60(12): 2427-2434.
[8]
Gourichon B, Deléglise M, Binetruy C, et al. Dynamic void content prediction during radial injection in liquid composite molding [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(1): 46-55.
[9]
Gourichon B, Binetruy C, Krawczak P. A new numerical procedure to predict dynamic void content in liquid composite molding [J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(11): 1961-1969.
[10]
Hu J L, Liu Y, Shao X M. Study on void formation in multi-layer woven fabrics [J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(5): 595-603.
[11]
Lee D H, Lee W I, Kang M K. Analysis and minimization of void formation during resin transfer molding process [J]. Composites Science and Technology, 2006, 66(16): 3281-3289.
[12]
Schell J S U, Deleglise M, Binetruy C, et al. Numerical prediction and experimental characterisation of meso-scale-voids in liquid composite moulding [J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(12): 2460-2470.
[13]
Lawrence J M, Neacsu V, Advani S G. Modeling the impact of capillary pressure and air entrapment on fiber tow saturation during resin infusion in LCM [J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(8): 1053-1064.
[14]
Lundstr?m T S, Frishfelds V, Jakovics A. Bubble formation and motion in non-crimp fabrics with perturbed bundle geometry [J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(1): 83-92.
[15]
DeValve C, Pitchumani R. Simulation of void formation in liquid composite molding process [J]. Composites Part A: Applied Science and Manufacturing, 2013, 51: 22-32.
[16]
Hirt C W, Nichols B D. Volum-of-fluid(VOF) method for the dynamics of free boundaries [J]. Journal of Computational Physics, 1981, 39(1): 201-225.
[17]
Zhang Y W, Faghri A. Numerical simulation of condensation on a capillary grooved surface [J]. Numerical Heat Transfer, Part A: Applications, 2001, 39(3): 227-243.
[18]
Young W B. The effect of surface tension on tow impregnation of unidirectional fibrous perform in resin transfer molding [J]. Journal of Composite Materials, 1996, 30(11): 1191-1209.
[19]
Foley M E, Gillespie J W. Modeling the effect of fiber diameter and fiber bundle count on tow impregnation during liquid molding processes [J]. Journal of Composites Materials, 2005, 39(12): 1045-1065.
[20]
杨 波, 金天国, 郑 龙. 微-细双尺度单胞下织物预成型体渗透率预测 [J]. 复合材料学报, 2013, 30(5): 209-217. Yang Bo, Jin Tianguo, Zheng Long. Permeability prediction for textile preform with micro-meso dual-scale unit cell [J]. Acta Meteriae Compositae Sinica, 2013, 30(5):209-217.
[21]
Gebart B R. Permeability of unidirectional reinforcements for RTM [J]. Journal of Composites Materials, 1992, 26(8): 1100-1133.
[22]
Leclerc J S, Ruiz E. Porosity reduction using optimized flow velocity in resin transfer molding [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(12): 1859-1868.