Wang R G, Pan W, Chen J, et al. Microstructure and mechanical properties of machinable Al2O3/LaPO4 composites by hot pressing [J]. Ceramics International, 2003, 29(1): 83-89.
[2]
Sumitomo T, Aizawa T, Yamamoto S. In-situ formation of self-lubricating tribo-films for dry machinability [J]. Surface and Coatings Technology, 2005, 200(5-6): 1797-1803.
[3]
Chen J H, Yoo W J, Chan D S H, et al. Self-assembly of Al2O3 nanodots on SiO2 using two-step controlled annealing technique for long retention nonvolatile memories [J]. Applied Physics Letters, 2005, 86(7): 073114.
[4]
Monteverde F. The addition of SiC particles into a MoSi2-doped ZrB2 matrix: effects on densification, microstructure and thermo-physical properties [J]. Materials Chemistry and Physics, 2009, 113(2-3): 626-633.
[5]
Mishra S K, Das S K, Pathak L C. Sintering behaviour of self-propagating high temperature synthesised ZrB2-Al2O3 composite powder [J]. Materials Science and Engineering: A, 2006, 426(1-2): 229-234.
[6]
Parthasarathy T A, Rapp R A, Opeka M, et al. A model for the oxidation of ZrB2, HfB2 and TiB2 [J]. Acta Materialia, 2007, 55(17): 5999-6010.
[7]
Opeka M M, Talmy I G, Wuchina E J, et al. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds [J]. Journal of the European Ceramic Society, 1999, 19(13-14): 2405-2414.
[8]
Sciti D, Monteverde F, Guicciardi S, et al. Microstructure and mechanical properties of ZrB2-MoSi2 ceramic composites produced by different sintering techniques [J]. Materials Science and Engineering: A, 2006, 434(1-2): 303-309.
[9]
Kim T S, Goto T, Lee B T. Microstructure control and mechanical properties of fibrous Al2O3/ZrO2 composites fabricated by extrusion process [J]. Scripta Materialia, 2005, 52(8): 725-729.
[10]
温兆银, 林祖镶, 顾中华, 等. ZrO2在β-Al2O3复合陶瓷中的作用 [J]. 复合材料学报, 1996, 13(3): 39-43. Wen Zhaoyin, Lin Zuxiang, Gu Zhonghua, et al. Behaviour of ZrO2in β-Al2O3ceramics [J]. Acta Materiae Compositae Sinica, 1996, 13(3): 39-43.
[11]
Rao P, Iwasa M, Wu J Q, et al. Effect of Al2O3 addition on ZrO2 phase composition in the Al2O3-ZrO2 system [J]. Ceramics International, 2004, 30(6): 923-926.
[12]
Lin X B, Smith R A. Finite element modelling of fatigue crack growth of surface cracked plates: Part I: the numerical technique [J]. Engineering Fracture Mechanics, 1999, 63(5): 503-522.
[13]
Ooi E T, Yang Z J. Modelling multiple cohesive crack propagation using a finite element-scaled boundary finite element coupled method [J]. Engineering Analysis with Boundary Elements, 2009, 33(7): 915-929.
[14]
Mos N, Belytschko T. Extended finite element method for cohesive crack growth [J]. Engineering Fracture Mechanics, 2002, 69(7): 813-833.
[15]
Trollé B, Gravouil A, Baietto M C, et al. Optimization of a stabilized X-FEM formulation for frictional cracks [J]. Finite Elements in Analysis and Design, 2012, 59: 18-27.
[16]
Pierres E, Baietto M C, Gravouil A, et al. 3D two scale X-FEM crack model with interfacial frictional contact: application to fretting fatigue [J]. Tribology International, 2010, 43(10): 1831-1841.
[17]
Perrière L, Valle R, Carrère N, et al. Crack propagation and stress distribution in binary and ternary directionally solidified eutectic ceramics [J]. Journal of the European Ceramic Society, 2011, 31(7): 1199-1210.
[18]
Swanson P L, Fairbanks C J, Lawn B R, et al. Crack-interface grain bridging as a fracture resistance I, mechanism in ceramics: I, experimental study on alumina [J]. Journal of the American Ceramic Society, 1987, 70(4): 279-289.