全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

陶瓷纤维增强氧化硅气凝胶复合材料力学性能试验

, PP. 635-643

Keywords: 陶瓷纤维,氧化硅气凝胶,复合材料,力学性能,隔热,微观结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

氧化硅气凝胶具有极低的热导率和密度,可作为很好的隔热材料,而脆弱的力学性能限制了其在隔热领域的应用。在不影响隔热效果的前提下,通过复合陶瓷纤维可增加氧化硅气凝胶的强度及韧性。试验探索了陶瓷纤维增强氧化硅气凝胶在室温下的拉伸、压缩和剪切等基本力学性能,分别研究了300℃、600℃和900℃下复合材料纤维铺层面方向的压缩性能,并采用扫描电子显微镜对高温试样微观结构进行了观察分析。结果表明:陶瓷纤维增强氧化硅气凝胶的性能表现出方向性,弹性模量在铺层面内方向与厚度方向的数值最大相差约28倍,强度极限亦然;在室温条件下,复合材料的拉伸和压缩弹性模量不同,X、Y和Z方向拉伸模量与对应的压缩模量之比分别为1.60、1.83和0.56;高温下复合材料沿厚度方向收缩,收缩量随温度升高而增大,900℃下的最大收缩量可达10.8%;高温下复合材料铺层面内方向压缩性能随温度升高而增强。

References

[1]  Kistler S S. Coherent expanded aerogels and jellies [J]. Nature, 1931, 127(3211): 741.
[2]  邓忠生, 王 珏, 陈玲燕. 气凝胶应用研究进展 [J]. 材料导报, 1999, 13(6): 47-49. Deng Zhongsheng, Wang Jue, Chen Lingyan. The development of aerogel applications [J]. Materials Review, 1999, 13(6): 47-49.
[3]  秦国彤, 门薇薇, 魏 微, 等. 气凝胶研究进展 [J]. 材料科学与工程学报, 2005, 23(2): 293-296. Qin Guotong, Men Weiwei, Wei wei, et al. Progress in the study of aerogels [J]. Journal of Materials Science and Engineering, 2005, 23(2): 293-296.
[4]  Parmenter K E, Milstein F. Mechanical properties of silica aerogels [J]. Journal of Non-Crystalline Solids, 1998, 223(3):179-189.
[5]  高庆福, 张长瑞, 冯 坚, 等. 氧化硅气凝胶隔热复合材料研究进展 [J]. 材料科学与工程学报, 2009, 27(2): 302-306. Gao Qingfu, Zhang Changrui, Feng Jian, et al. Progress of silica aerogel insulation composites [J]. Journal of Materials Science and Engineering, 2009, 27(2): 302-306.
[6]  高庆福, 冯 坚, 张长瑞, 等. 陶瓷纤维增强氧化硅气凝胶隔热复合材料的力学性能 [J]. 硅酸盐学报, 2009, 37(1): 1-5. Gao Qingfu, Feng Jian, Zhang Changrui, et al. Mechanical properties of ceramic fiber-reinforced silica aerogel insulation composites [J]. Journal of the Chinese Ceramic Society, 2009, 37(1): 1-5.
[7]  孙燕涛, 石多奇, 杨晓光, 等. 纤维增强SiO2气凝胶复合材料压缩性能和变形机制 [J]. 复合材料学报, 2013, 30(4): 225-230. Sun Yantao, Shi Duoqi, Yang Xiaoguang, et al. Compression and deformation mechanisms of a fiber-reinforced SiO2 aerogel composite [J]. Acta Materiae Compositae Sinica, 2013, 30(4): 225-230.
[8]  Toledo-Fernández J A, Mendoza-Serna R, Santos A, et al. Improvement of the bioactivity of organic-inorganic hybrid aerogels/wollastonite composites with TiO2 [J]. Journal of Sol-Gel Science and Technology, 2008, 45(3): 261-267.
[9]  de la Rosa-Fox N, Toledo-Fernández J A, Morales-Flórez V, et al. Creep and stress relaxation of hybrid organic-inorganic aerogels [J]. Key Engineering Materials, 2010, 423:167-172.
[10]  Lee M Y, Hofer J H, Bronowski D R, et al. Mechanical properties of thermal protection system materials, SAND 2005-3173 [R]. New Mexico: Sandia National Laboratories, 2005.
[11]  European Committee for Standardization. DIN EN 12291 Mechanical properties of ceramic composites at high temperature in air at atmospheric pressure [S]. Berlin: European Committee for Standardization, 2003.
[12]  American Society for Testing and Materials. ASTM D 4255/D 4255M Standard test method for in-plane shear properties of polymer matrix composite materials by the rail shear method [S]. West Conshohocken, PA: ASTM International, 2002.
[13]  王小东. 纳米多孔SiO2气凝胶隔热复合材料应用基础研究 [D]. 长沙: 国防科技大学, 2006. Wang Xiaodong. Base research on the application of nanoporous SiO2 aerogel based thermal insulation composites [D]. Changsha: National University of Defense Technology, 2006.
[14]  Phalippou J, Despetis F, Calas S, et al. Comparison between sintered and compressed aerogels [J]. Optical Materials, 2004, 26(2): 167-172.
[15]  Woignier T, Phalippou J. Mechanical strength of silica aerogels [J]. Journal of Non-Crystalline Solids, 1988, 100(1): 404-408.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133