全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

超临界CO2方法制备纳米蒙脱土/氢化丁腈橡胶复合材料

, PP. 604-609

Keywords: 超临界CO2,纳米蒙脱土,氢化丁腈橡胶,复合材料,纳米结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

比较了超临界CO2方法与机械共混法制备的纳米蒙脱土/氢化丁腈橡胶复合材料的结构与性能,以验证超临界CO2方法在氢化丁腈橡胶复合材料制备中的有效性。并研究了超临界CO2处理条件对蒙脱土分散情况的影响。XRD及TEM研究表明,与机械共混法相比,超临界CO2处理有效提高了氢化丁腈分子向蒙脱土层间扩散的能力,使层间距进一步增大,最大达3.93nm。同时,蒙脱土片层能够均匀无规地分散于氢化丁腈橡胶基体中,且具有较高的剥离程度。而超临界处理时,温度和压力的变化对蒙脱土的分散情况影响不大。蒙脱土加入后,蒙脱土/氢化丁腈橡胶复合材料的拉伸强度显著提高,从14.4MPa分别增加到16.3MPa(机械共混法)和19.6MPa(超临界CO2方法),断裂伸长率也略有增加。超临界CO2方法比机械共混法所制备复合材料的力学性能要高,且在介质浸泡前后,仍能够保持较好的力学性能。

References

[1]  禹 权, 黄承亚, 叶素娟. 氢化丁腈橡胶的研究进展 [J]. 特种橡胶制品, 2006, 27(2): 56-62. Yu Quan, Huang Chengya, Ye Sujuan. The Study of hydrogenated acrylonitrile-butadiene rubber [J]. Special Purpose Rubber Products, 2006, 27(2): 56-62.
[2]  黄安民, 王小萍, 贾德民. 氢化丁腈橡胶/聚甲基丙烯酸镁/有机蒙脱土纳米复合材料制备及其耐介质老化性能 [J].高分子学报, 2012(6): 660-665. Huang Anmin, Wang Xiaoping, Jia Demin. Preparation of HNBR/PMgMA/OMT nanocomposites and their aging resistance in different media [J]. Acta Polymerica Sinica, 2012(6): 660-665.
[3]  秦舒浩, 胡世军, 罗 筑, 等. 制备工艺对纳米有机蒙脱土/聚酰胺6-聚丙烯复合材料分散相形态及力学性能的影响 [J]. 复合材料学报, 2011, 28(6): 14-22. Qin Shuhao, Hu Shijun, Luo Zhu, et al. Effect of preparation processes on morphology and mechanical properties of nano-organ-montmorillonite/polyamide-6Vpolypropylene composites [J]. Acta Materiae Compositae Sinica, 2011, 28(6): 14-22.
[4]  蔡维婷, 苏丽丽, 殷 石, 等. 纳米硅酸盐与芳纶微米短纤维共补强HNBR复合材料的结构与性能 [J].橡胶工业, 2010, 57(3): 133-138. Cai Weiting, Su Lili, Yin Shi, et al. Structure and properties of HNBR composites reinforced by silicate nano-short fiber and short aramid fiber [J]. Rubber Industry, 2010, 57(3): 133-138.
[5]  Gatos K G, Százdi L, Pukánszky B, et al. Controlling the deintercalation in hydrogenated nitrile rubber (HNBR)/organo-montmorillonite nanocomposites by curing with peroxide [J]. Macromolecular Rapid Communications, 2005, 26(11): 915-919.
[6]  Ali Z, Le H H, Ilisch S, et al. Morphology development and compatibilization effect in nanoclay filled rubber blends [J]. Polymer, 2010, 51(20): 4580-4588.
[7]  Zhang R L, Liu L, Huang Y D, et al. Prepared hydrogenated nitrile rubber (HNBR)/organo-montmorillonite nanocomposites by the melt intercalation method [J]. Journal of Applied Polymer Science, 2010, 117(5): 2870-2876.
[8]  谷 正, 宋国君, 王宝金, 等. 氢化丁腈橡胶/有机蒙脱土纳米复合材料的性能 [J]. 化工进展, 2007, 26(12): 1767-1770. Gu Zheng, Song Guojun, Wang Baojin, et al. Properties of HNBR/OMMT nanocomposites [J]. Chemical Industry and Engineering Progress, 2007, 26(12): 1767-1770.
[9]  朱永康. 蒙脱土/氢化丁腈橡胶纳米复合材料之分析 [J]. 世界橡胶工业, 2008, 35(4): 1-6. Zhu Yongkang. Analysis of MMT/HNBR nanocomposites [J]. World Rubber Industry, 2008, 35(4): 1-6.
[10]  潘 岩, 赵素合, 李 颀. 增强氢化丁腈橡胶的结构与性能 [J]. 合成橡胶工业, 2009, 32(3): 232-237. Pan Yan, Zhao Suhe, Li Qi. Structure and properties of reinforeced hydrogenated nitrile rubber [J]. China Synthetic Rubber Industry, 2009, 32(3): 232-237.
[11]  刘 玲, 郭海福, 曾幸荣, 等. PVAc-nano-OMMT/ PP-EVA复合材料的制备与性能 [J]. 复合材料学报, 2011, 28(2): 64-69. Liu Ling, Guo Haifu, Zeng Xingrong, et al. Preparation and properties of PVAc-nano-OMMT/ PP-EVA composite [J]. Acta Materiae Compositae Sinica, 2011, 28(2): 64-69.
[12]  杨子芹, 刘卫卫, 杨小兵, 等. 纳米填料改性丁基橡胶复合材料的力学性能、芥子气防护性能和燃烧性能 [J].复合材料学报, 2009, 26(6): 25-30. Yang Ziqin, Liu Weiwei, Yang Xiaobing, et al. Mechanical properties, mustard protection and flammability of nanofillers reinforced isobutylene-isoprene rubber composites [J]. Acta Materiae Compositae Sinica, 2009, 26(6): 25-30.
[13]  Gatos K G, Karger-Kocsis J. Effect of the aspect ratio of silicate platelets on the mechanical and barrier properties of hydrogenated acrylonitrile butadiene rubber(HNBR)/layered silicate nanocomposites [J]. European Polymer Journal, 2007, 43(4): 1097-1104.
[14]  冯桂双, 李长生, 唐 华, 等. 悬浮聚合法制备纳米蒙脱土/聚合物(苯乙烯-共聚-二乙烯基苯)复合材料及性能 [J].复合材料学报, 2010, 27(3): 36-42. Feng Guishuang, Li Changsheng, Tang Hua, et al. Preparation and properties of nano-montmorillonite/polymer (styrene-co-divinylbenzene) composite by suspension polymerization [J]. Acta Materiae Compositae Sinica, 2010, 27(3): 36-42.
[15]  Wang X P, Huang A M, Jia D M, et al. From exfoliation to intercalation-changes in morphology of HNBR/organoclay nanocomposites [J]. European Polymer Journal, 2008, 44(9): 2784-2789.
[16]  周国江, 刘金涛.硫化剂对HNBR/OMMT纳米复合材料性能的影响 [J].黑龙江科技学院学报, 2011, 21(3): 215-218. Zhou Guojiang, Liu Jintao. Influences of sulfurization agent on properties of HNBR /OMMT nanocomposite [J]. Journal of Heilongjiang Institute of Science & Technology, 2011, 21(3): 215-218.
[17]  Zhao Q, Samulski E T. Supercritical CO2-mediated intercalation of PEO in clay [J]. Macromolecules, 2003, 36(19): 6967-6969.
[18]  Zhao Q, Samulski E T. In situ polymerization of poly (methyl methacrylate)/clay nanocomposites in supercritical carbon dioxide [J]. Macromolecules, 2005, 38(19): 7967-7971.
[19]  Nguyen Q T, Baird D G. An improved technique for exfoliating and dispersing nanoclay particles into polymer matrices using supercritical carbon dioxide [J]. Polymer, 2007, 48(23): 6923-6933.
[20]  Urbanczyk L, Calberg C, Benali S, et al. Poly(caprolactone)/clay masterbatches prepared in supercritical CO2 as efficient clay delamination promoters in poly(styrene-co-acrylonitrile) [J]. Journal of Materials Chemistry, 2008, 18(39): 4623-4630.
[21]  Liu J, Thompson M R, Balogh M P, et al. Influence of supercritical CO2 on the interactions between maleated polypropylene and alkyl-ammonium organoclay [J]. Journal of Applied Polymer Science, 2011, 119(4): 2223-2234.
[22]  American Society for Testing and Materials. D412 Standard test methods for vulcanized rubber and thermoplastic elastomers-tension [S]. West Conshohoken, PA, United States : ASTM International, 2002.
[23]  Condo P D, Paul D R, Johnston K P. Glass transitions of polymers with compressed fluid diluents: typeⅡandⅢbehavior [J]. Macromolecules, 1994, 27(2): 365-371.
[24]  Chen C, Bortner M, Quigley J P, et al. Using supercritical carbon dioxide in preparing carbon nanotube nanocomposite: improved dispersion and mechanical properties [J]. Polymer Composites, 2012, 33(6):1033-1043.
[25]  Dalir H, Farahani R D, Nhim V, et al. Preparation of highly exfoliated polyester-clay nanocomposites: process-property correlations [J]. Langmuir, 2012, 28(1): 791-803.
[26]  Maiti M, Bhowmick A K. Effect of polymer-clay interaction on solvent transport behavior of fluoroelastomer-clay nanocomposites and prediction of aspect ratio of nanoclay [J]. Journal of Applied Polymer Science, 2007, 105(2), 435-445.
[27]  Xiao J, Huang Y L, Manke C W. Computational design of polymer nanocomposite coatings: a multiscale hierarchical approach for barrier property prediction [J]. Industrial & Engineering Chemistry Research, 2010, 49(17): 7718-7727.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133