Vallauri D, Atias Adrian I C, Chrysanthou A. TiC-TiB2 composites: a review of phase relationships, processing and properties [J]. Journal of the European Ceramic Society, 2008, 28(8): 1697-1713.
[2]
杜宝帅, 邹增大, 王新洪, 等. 激光熔覆原位自生TiB2-TiC/FeCrSiB复合涂层研究 [J]. 应用激光, 2007, 27(4): 269-272. Du Baoshuai, Zou Zengda, Wang Xinhong, et al. Investigation on in situ synthesis of TiB2-TiC/FeCrSiB composite coatings by laser cladding [J]. Applied Laser, 2007, 27(4): 269-272.
[3]
Cha L, Lartigue-Korinek S, Walls M, et al. Interface structure and chemistry in a novel steel-based composite Fe-TiB2 obtained by eutectic solidification [J]. Acta Materialia, 2012, 60(18): 6382-6389.
[4]
Zou B, Huang C Z, Song J P, et al. Mechanical properties and microstructure of TiB2-TiC composite ceramic cutting tool material [J]. International Journal of Refractory Metals and Hard Materials, 2012, 35: 1-9.
[5]
Wang X H, Zhang M, Du B S. Fabrication in situ TiB2-TiC-Al2O3 multiple ceramic particles reinforced Fe-based composite coatings by gas tungsten arc welding [J]. Tribology Letters, 2011, 41(1): 171-176.
[6]
Wang X B, Shun H L, Li C G, et al. The performances of TiB2-contained iron-based coatings at high temperature [J]. Surface and Coatings Technology, 2006, 201 (6): 2500-2504.
[7]
Yang Y F, Wang H Y, Zhao R Y, et al. Effect of Ni content on the reaction behaviors of sef-propagating high-temperature synthesis in the Ni-Ti-B4C system [J]. International Journal of Refractory Metals and Hard Materials, 2008, 26(2): 77-83.
[8]
Zou B L, Shen P, Jing Q C. Dependence of the SHS reaction behavior and product on B4C particle size in Al-Ti-B4C and Al-TiO2-B4C systems [J]. Materials Research Bulletin, 2009, 44(3): 499-504.
[9]
Guedea J, Yee-Madeira H, Cabanas J G. Mechanically induced instability in Fe2Ti and mechanical alloying of Fe and Ti [J]. Journal of Materials Science, 2004, 39(7): 2523-2528.
[10]
Zhang X H, Yu M H, Tang H Q, et al. Effect of copper addition on microstructures and mechanical properties of in situ TiCp/Fe composites [J]. Materials & Design, 2011, 32(6): 3560-3565.
[11]
王宏亮, 杨 屹, 冯可芹, 等. 电场诱导Fe-Ti-C系燃烧合成: 电流对合成产物的影响 [J]. 稀有金属材料与工程, 2007, 36(8): 1483-1486. Wang Hongliang, Yang Yi, Feng Keqin, et al. Combustion synthesis of Fe-Ti-C system by electric field inducement: effect of electric current on the synthesis products [J]. Rare Metal Materials and Engineering, 2007, 36(8): 1483-1486.
[12]
Akhtar F, Hasan F. Reactive sintering and properties of TiB2 and TiC porous cermets [J]. Materials Letters, 2008, 62(8-9): 1242-1245.
[13]
王业亮, 傅正义, 王 皓, 等. TiB2-TiC复相陶瓷的结构与性能研究 [J]. 复合材料学报, 2003, 20(1): 22-26. Wang Yeliang, Fu Zhengyi, Wang Hao, et al. Study on the structure and properties of TiB2-TiC multiphase ceramics [J]. Acta Materiae Compositae Sinica, 2003, 20(1): 22-26.
[14]
Li B H, Liu Y, Li J, et al. Effect of sintering process on the microstructures and properties of in situ TiB2-TiC reinforced steel matrix composites produced by spark plasma sintering [J]. Journal of Materials Processing Technology, 2010, 210(1): 91-95.
[15]
Li J L, Li F, Hu K, et al. TiB2/TiC nanocomposite powder fabricated via high energy ball milling [J]. Journal of the European Ceramic Society, 2001, 21(16): 2829-2833.
[16]
Li W J, Tu R, Goto T. Preparation of directionally solidified TiB2-TiC eutectic composites by a floating zone method [J]. Materials Letter, 2006, 60(6): 839-843.
[17]
梁连杰, 陈少平, 刘泽锋, 等. 电场辅助原位合成TiB2-TiC-Ni/TiAl/Ti功能梯度材料及界面结构 [J]. 复合材料学报, 2011, 28(5): 139-144. Liang Lianjie, Chen Shaoping, Liu Zefeng, et al. In situ synthesis of TiB2-TiC-Ni/TiAl/Ti functionally graded materials by FAPAS and structural characteristics of the interface [J]. Acta Materiae Compositae Sinica, 2011, 28(5): 139-144.
[18]
Du B S, Zou Z D, Wang X H, et al. In situ synthesis of TiB2/Fe composite coating by laser cladding [J]. Materials Letters, 2008, 62(4-5): 689-691.
[19]
Du B S, Patital S R, Dahotre N B. Synthesis of TiB2-TiC/Fe nano-composite coating by laser surface engineering [J]. Optics & Laser Technology, 2013, 45: 647-653.
[20]
Emamian A, Corbin S F, Khajeour A. The effect of powder composition on the morphology of in situ TiC composite coating deposited by laser-assisted powder deposition (LAPD) [J]. Applied Surface Science, 2012, 261: 201-208.
[21]
Vallauri D, Atias Adrian I C, Chrysanthou A. TiB2-TiC composites: a review of phase relationships, processing and properties [J]. Journal of the European Ceramic Society, 2008, 28(8): 1697-1713.
[22]
崔洪芝, 肖成柱, 孙金全, 等. AZ91D镁合金等离子束重熔组织与性能 [J]. 中国有色金属学报, 2012, 22(4): 1000-1005. Cui Hongzhi, Xiao Chengzhu, Sun Jinquan, et al. Microstructure and properties of AZ91D magnesium alloy remelted by plasma beam [J]. The Chinese Journal of Nonferrous Metals, 2012, 22(4): 1000-1005.
[23]
Vladkova T G, Keranov I L, Dineff P D, et al. Plasma based Ar+beam assisted poly (dimethylsiloxane) surface modification [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 236(1-4): 552-562.
[24]
Wang Z T, Zhou X H, Zhao G G. Microstructure and formation mechanism of in-situ TiB2-TiC/Fe composite coating [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(4): 831-835.
[25]
Goncharuk D A, Baglyuk G A. Interaction between Fe-Ti-B4C powder charge components during heating [J]. Powder Metallurgy and Metal Ceramics, 2013, 51(9-10): 547-553.
[26]
Li B H, Liu Y, Cao H, et al. Rapid synthesis of TiB2/Fe composite in situ by spark plasma sintering [J]. Journal of Materials Science, 2009, 44(14): 3909-3912.
[27]
Nie J F, Wu Y Y, Li P T, et al. Morphological evolution of TiC form octahedron to cube induced by elemental nickel [J]. CrystEngComm, 2012, 14(6): 2213-2221.
[28]
廖先杰, 翟玉春, 谢宏伟, 等. 700℃熔盐电解制备固态钛铁合金化合物 [J]. 材料研究学报, 2009, 23(2): 133-137. Liao Xianjie, Zhai Yuchun, Xie Hongwei, et al. Preparation of solid state Fe-Ti alloy compound by FFC in molten salts at 700℃ [J]. Chinese Journal of Materials Research, 2009, 23(2): 133-137.