全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纤维金属层板低速冲击试验和数值仿真

, PP. 733-740

Keywords: 纤维金属层板,冲击,连续损伤力学,塑性,数值仿真

Full-Text   Cite this paper   Add to My Lib

Abstract:

为开展纤维金属层板(FML)低速冲击有限元数值仿真研究,改进了传统的连续损伤力学(CDM)模型,然后对FML落锤低速冲击试验进行数值仿真,并与实验结果进行对比验证。分别采用5.11J和10.33J冲击能量对FML进行落锤低速冲击试验,得到冲击载荷、位移和能量时程曲线,分析FML的动态响应和失效模式。建立了考虑塑性应变、压缩刚度衰减特征和纤维拉伸断裂损伤的新CDM模型,描述S2-玻璃纤维/环氧树脂(S2-galss/epoxy)复合材料的损伤本构,并编写VUMAT子程序,通过ABAQUS/Explicit求解器对FML落锤冲击试验进行数值仿真。研究结果表明:低能量冲击条件下,FML背面主要为鼓包和裂纹等失效模式,位移峰值随冲击能量的提高而增加,冲击载荷峰值在穿透前也随冲击能量的提高而增加;采用改进的CDM模型描述FML中S2-galss/epoxy复合材料铺层后,有限元数值计算可以较好地预测FML低速冲击载荷下的动态响应;有限元数值仿真结果表明,FML中第2层复合材料铺层发生的纤维断裂损伤比第1层的更严重。

References

[1]  McCarthy C T, McCarthy M A, Lawlor V P. Progressive damage analysis of multi-bolt composite joints with variable bolt-hole clearances [J]. Composites Part B: Engineering, 2005, 36(4): 290-305.
[2]  古兴瑾, 许希武. 纤维增强复合材料层板高速冲击损伤数值模拟 [J]. 复合材料学报, 2012, 29 (1): 150-161. Gu Xingjin, Xu Xiwu. Numerical simulation of damage in fiber reinforced composite laminates under high velocity impact [J]. Acta Materiae Compositae Sinica, 2012, 29(1): 150-161.
[3]  Maa R H, Cheng J H. A CDM-based failure model for predicting strength of notched composite laminates [J]. Composites Part B: Engineering, 2002, 33(6): 479-489.
[4]  Maimí P, Camanho P P, Mayugo J A, et al. A contiuum damage model for composite laminates: part I – constitutive model [J]. Mechanics of Materials, 2007, 39(10): 897-908.
[5]  Maire J F, Chaboche J L. A new formulation of continuum damage mechanics (CDM) for composite materials [J]. Aerospace Science and Technology, 1997, 1(4): 247-257.
[6]  Ladeveze P, LeDantec E. Damage modelling of the elementary ply for laminated composites [J]. Composites Science and Technology, 1992, 43(3): 257-267.
[7]  O'Higgins R M, McCarthy C T, McCarthy M A. Identification of damage and plasticity parameters for continuum damage mechanics modelling of carbon and glass fibre-reinforced composite materials [J]. Strain, 2011, 47(1): 105-115.
[8]  Frizzell R M, McCarthy C T, McCarthy M A. Predicting the effects of geometry on the behaviour of fibre metal laminate joints [J]. Composite Structures, 2011, 93(7): 1877-1889.
[9]  张 彦. 纤维增强复合材料层合结构冲击损伤预测研究 [D]. 上海: 上海交通大学, 2007. Zhang Yan. Study on impact damage prediction in fiber reinforced composite laminated structures [D]. Shanghai: Shanghai Jiao Tong University, 2007.
[10]  McCrathy M A, Xiao J R, McCarthy C T, et al. Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates-part 2: modelling of impact with SPH bird model [J]. Applied Composite Materials, 2004, 11(5): 317-340.
[11]  McCrathy M A, Xiao J R, Prtrinic N, et al. Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates–Part 1: material modelling [J]. Applied Composite Materials, 2004, 11(5): 295-315.
[12]  Laliberté J, Poon C, Straznicky P V. Numerical modelling of low-velocity impact damage in fibre-metal laminates [C]//ICAS 2002 Congress (The International Council of the Aeronautical Sciences Congress). Toronto, Canada, 2002.
[13]  Vogelesang L B, Vlot A. Development of fibre metal laminates for advanced aerospace structures [J]. Journal of Materials Processing Technology, 2000, 103(1): 1-5.
[14]  Woerden H J M, Sinke J, Hoouijmeijer P A. Maintenance of glare structures and glare as riveted or bonded repair material [J]. Applied Composite Materials, 2003, 10(4-5): 307-329.
[15]  Vermeeren C A J R. An historic overview of the development of fibre metal laminates [J]. Applied Composite Materials, 2003, 10(4-5): 189-205.
[16]  Sadighi M, Alderliesten R C, Benedictus R. Impact resistance of fiber-metal laminates: a review [J]. International Journal of Impact Engineering, 2012, 49: 77-90.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133