全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多尺度纤维增强水泥基复合材料力学性能试验

, PP. 661-668

Keywords: 多尺度,纤维,水泥基复合材料,力学性能,断裂,微观结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于水泥基材料多尺度的结构特征及破坏过程,设计了一种由钢纤维、聚乙烯醇(PVA)纤维以及碳酸钙晶须构成的多尺度纤维增强水泥基复合材料(MSFRCC),研究了其抗压强度、抗弯强度、弯曲韧性、多缝开裂形态以及断裂过程等基本力学性能。结果表明:基体材料的强度和韧性均得到了显著提高;MSFRCC在弯曲荷载作用下表现出了硬化行为和多缝开裂模式。扫描电子显微镜和断裂试验结果证实了多尺度纤维在水泥基复合材料破坏过程中发挥了多尺度阻裂作用。研究认为:通过对纤维进行多尺度组合设计,可以显著改善水泥基复合材料的韧性,廉价的碳酸钙晶须可以适量取代钢纤维和PVA纤维。

References

[1]  American Society for Testing and Materials. ASTM C1609 Standard test method for flexural performance of fiber-reinforced concrete [S]. Philadelphia: ASTM International, 2010.
[2]  Japan Concrete Institute. JCI-SF4 Methods of tests for flexural strength and flexural toughness of fiber reinforced concrete [S]. Japan: Japan Concrete Institute, 1983.
[3]  International Union of Laboratories and Experts in Construction Materials. RILEM TC-50FMC Determination of the fracture energy of mortar and concrete by means of three-point-bend tests on notched beams [S]. France: RILEM Committee, 1985.
[4]  Sivakumar A, Santhanam M. Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres [J]. Cement and Concrete Composites, 2007, 29(8): 603-608.
[5]  Bentz D P, Garboczi E J, Jennings H M, et al. Multi-scale digital-image-based modeling of cement-based materials [C]// Diamond S. Microstructure of Cement-Based Systems/Bonding and Interfaces in Cementitious Materials Symposia. Boston: Materials Research Society Symposium Proceeding, 1995: 33-41.
[6]  Bentz D P. Influence of silica fume on diffusivity in cement-based materials: II . Multi-scale modeling of concrete diffusivity [J]. Cement and Concrete Research, 2000, 30(7): 1121-1129.
[7]  Wriggers P, Moftah S O. Mesoscale models for concrete: homogenisation and damage behaviour [J]. Finite Elements in Analysis and Design, 2006, 42(7): 623-636.
[8]  陈惠苏, 孙 伟, Stroeven P. 水泥基复合材料界面过渡区体积分数的定量计算 [J]. 复合材料学报, 2006, 23(2): 133-142. Chen Huisu, Sun Wei, Stroeven P. Quantitative solution of volume fraction of interface in cementitious composites [J]. Acta Materiae Compositae Sinica, 2006, 23(2): 133-142.
[9]  Maekawa K, Ishida T, Kishi T. Multi-scale modeling of concrete performance [J]. Journal of Advanced Concrete Technology, 2003, 1(2): 91-126.
[10]  Kabele P. Multiscale framework for modeling of fracture in high performance fiber reinforced cementitious composites [J]. Engineering Fracture Mechanics, 2007, 74(1): 194-209.
[11]  Pereira E B, Fischer G, Barros J A O. Direct assessment of tensile stress-crack opening behavior of strain hardening cementitious composites (SHCC) [J]. Cement and Concrete Research, 2012, 42(6): 834-846.
[12]  Pereira E B, Fischer G, Barros J A O. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites [J]. Cement and Concrete Composites, 2012, 34(10): 1114-1123.
[13]  Parant E, Rossi P, Boulay C. Fatigue behavior of a multi-scale cement composite [J]. Cement and Concrete Research, 2007, 37(2): 264-269.
[14]  Parant E, Pierre R, Maou F L. Durability of a multiscale fibre reinforced cement composite in aggressive environment under service load [J]. Cement and Concrete Research, 2007, 37(7): 1106-1114.
[15]  Rossi P, Parant E. Damage mechanisms analysis of a multi-scale fibre reinforced cement-based composite subjected to impact and fatigue loading conditions [J]. Cement and Concrete Research, 2008, 38(3): 413-421.
[16]  Rossi P. Multiple scale cement composite with positive and ductile setting in uniaxial tension: USA, US 6860935 B2 [P]. 2005-03-01.
[17]  梁宁慧, 刘新荣, 孙 霁. 多尺度聚丙烯纤维混凝土单轴拉伸试验 [J]. 重庆大学学报: 自然科学版, 2012, 35(6): 80-84. Liang Ninghui, Liu Xinrong, Sun Ji. Uniaxial tensile test of multi-scale polypropylene fiber reinforced concrete [J]. Journal of Chongqing University: Natural Science Edition, 2012, 35(6): 80-84.
[18]  梁宁慧, 刘新荣, 孙 霁. 多尺度聚丙烯纤维混凝土抗裂性能的试验研究 [J]. 煤炭学报, 2012, 37(8): 1304-1309. Liang Ninghui, Liu Xinrong, Sun Ji. Experimental study of crack resistance for multi-scale polypropylene fiber reinforced concrete [J]. Journal of China Coal Society, 2012, 37(8): 1304-1309.
[19]  高丹盈, 李 晗, 杨 帆. 聚丙烯-钢纤维增强高强混凝土高温性能 [J]. 复合材料学报, 2013, 30(1): 187-193. Gao Danying, Li Han, Yang Fan. Performance of polypropylene-steel hybrid fiber reinforced concrete after being exposed to high temperature [J]. Acta Materiae Compositae Sinica, 2013, 30(1): 187-193.
[20]  徐世烺, 蔡新华. 超高韧性水泥基复合材料碳化与渗透性能试验研究 [J]. 复合材料学报, 2010, 27(3): 177-183. Xu Shilang, Cai Xinhua. Experimental study on permeability and carbonation properties of ultra high toughness cementitious composites [J]. Acta Materiae Compositae Sinica, 2010, 27(3): 177-183.
[21]  候利军, 张秀芳, 徐世烺. 试件厚度对超高韧性水泥基复合材料弯曲性能的影响 [J]. 复合材料学报, 2011, 28(4): 171-179. Hou Lijun, Zhang Xiufang, Xu Shilang. Influence of specimens' thickness on flexural behavior of ultrahigh toughness cementitious composite [J]. Acta Materiae Compositae Sinica, 2011, 28(4): 171-179.
[22]  陈卫祥, 陈文录, 徐铸德, 等. 碳纳米管的特性及其高性能的复合材料 [J]. 复合材料学报, 2001, 18(4): 1-5. Chen Weixiang, Chen Wenlu, Xu Zhude, et al. Characteristics of carbon nanotubes and high-quality composites [J]. Acta Materiae Compositae Sinica, 2001, 18(4): 1-5.
[23]  Cao M L, Zhang C, Wei J Q. Microscopic reinforcement for cement based composite materials [J]. Construction and Building Materials, 2013, 40: 14-25.
[24]  Cao M L, Wei J Q. Microstructure and mechanical properties of CaCO3 whisker-reinforced cement [J]. Journal of Wuhan University of Technology : Materials Science, 2011, 26(5): 1004-1009.
[25]  Cao M L, Wei J Q, Wang L J. Serviceability and reinforcement of low content whisker in Portland cement [J]. Journal of Wuhan University of Technology : Materials Science, 2011, 26(4): 749-753.
[26]  Lawler J S, Zampini D, Shah S P. Microfiber and macrofiber hybrid fiber-reinforced concrete [J]. Journal of Materials in Civil Engineering, 2005, 17(5): 595-604.
[27]  Banthia N, Gupta R. Hybrid fiber reinforced concrete (HyFRC): fiber synergy in high strength matrices [J]. Materials and Structure, 2004, 37(10): 707-716.
[28]  American Society for Testing and Materials. ASTM C494 Standard specification for chemical admixtures for concrete [S]. Philadelphia: ASTM International, 2011.
[29]  American Society for Testing and Materials. ASTM C230 Standard specification for flow table for use in tests of hydraulic cement [S]. Philadelphia: ASTM International, 2008.
[30]  International Organization for Standardization. ISO 679 Cement-test methods-determination of strength [S]. Switzerland: ISO, 2009.
[31]  American Society for Testing and Materials. ASTM C348 Standard test method for flexural strength of hydraulic-cement mortars [S]. Philadelphia: ASTM International, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133