Lim S H, Zeng K Y, He C B. Morphology, tensile and fracture characteristics of epoxy-alumina nanocomposites [J]. Materials Science and Engineering: A, 2010, 527(21-22): 5670-5676.
[2]
Shukla D K, Kasisomayajula S V, Parameswaran V. Epoxy composites using functionalized alumina platelets as reinforcements [J]. Composites Science and Technology, 2008, 68(14): 3055-3063.
[3]
Wetzel B, Haupert F, Qiu Zhang M. Epoxy nanocomposites with high mechanical and tribological performance [J]. Composites Science and Technology, 2003, 63(14): 2055-2067.
[4]
Johnsen B B, Kinloch A J, Mohammed R D, et al. Toughening mechanisms of nanoparticle-modified epoxy polymers [J]. Polymer, 2007, 48(2): 530-541.
[5]
Zhao S, Schadler L, Duncan R, et al. Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy [J]. Composites Science and Technology, 2008, 68(14): 2965-2975.
[6]
Zhao S, Schadler L, Hillborg H, et al. Improvements and mechanisms of fracture and fatigue properties of well-dispersed alumina/epoxy nanocomposites [J]. Composites Science and Technology, 2008, 68(14): 2976-2982.
[7]
Liu G, Zhang H, Zhang D J, et al. On depression of glass transition temperature of epoxy nanocomposites [J]. Journal of Materials Science, 2012, 47(19): 6891-6895.
[8]
Zunjarrao S C, Singh R P. Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles [J].Composites Science and Technology, 2006, 66(13): 2296-2305.
[9]
Mirmohseni A, Zavareh S. Preparation and characterization of an epoxy nanocomposite toughened by a combination of thermoplastic, layered and particulate nano-fillers [J]. Materials & Design, 2010, 31(6): 2699-2706.
[10]
Liu H Y, Wang G T, Mai Y W, et al. On fracture toughness of nano-particle modified epoxy [J]. Composites Part B: Engineering, 2011, 42(8): 2170-2175.
[11]
Chikhi N, Fellahi S, Bakar M. Modification of epoxy resin using reactive liquid (ATBN) rubber [J]. European Polymer Journal, 2002, 38(2): 251-264.
[12]
Wu H, Xu J, Liu Y, et al. Investigation of readily processable thermoplastic-toughened thermosets. V. epoxy resin toughened with hyperbranched polyester [J]. Journal of Applied Polymer Science, 1998, 72(2): 151-163.
[13]
Jang J, Shin S. Toughness improvement of tetrafunctional epoxy resin by using hydrolysed poly (ether imide) [J]. Polymer, 1995, 36(6): 1199-1207.
[14]
Kinloch A J, Yuen M L, Jenkins S D. Thermoplastic-toughened epoxy polymers [J]. Journal of Materials Science, 1994, 29(14): 3781-3790.
[15]
Dong Y, Chaudhary D, Ploumis C, et al. Correlation of mechanical performance and morphological structures of epoxy micro/nanoparticulate composites [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(10): 1483-1492.
[16]
Omrani A, Simon L C, Rostami A A. The effects of alumina nanoparticle on the properties of an epoxy resin system [J]. Materials Chemistry and Physics, 2009, 114(1): 145-150.
[17]
郑亚萍, 王 波. TiO2/环氧树脂纳米复合材料的研究 [J]. 复合材料学报, 2002, 19(4): 11-13. Zheng Yaping, Wang Bo. Study on the properties of TiO2/epoxy nanocomposite [J].Acta Materiae Compositae Sinica, 2002, 19(4):11-13.
[18]
Liang Y L, Pearson R A. The toughening mechanism in hybrid epoxy-silica-rubber nanocomposites (HESRNs) [J]. Polymer, 2010, 51(21): 4880-4890.
[19]
Chen C, Justice R S, Schaefer D W, et al. Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties [J]. Polymer, 2008, 49(17): 3805-3815.
[20]
American Society for Testing and Materials. ASTM D 638-03 Standard test method for tensile properties of plastics [S]. West Conshohocken, United States: ASTM International, 2003.
[21]
American Society for Testing and Materials. ASTM D5045-99 Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials [S]. West Conshohocken, United States: ASTM International, 2003.
[22]
Wetzel B, Rosso P, Haupert F, et al. Epoxy nanocomposites-fracture and toughening mechanisms [J]. Engineering Fracture Mechanics, 2006, 73(16): 2375-2398.