全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于宏观各向异性碳纤维增强树脂基复合材料的切削仿真

, PP. 584-590

Keywords: 碳纤维增强树脂基复合材料,切削仿真,失效准则,极限应力,纤维方向

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了对碳纤维增强树脂基复合材料切削加工过程中的基体破坏及亚表层损伤机制进行研究,借助数值仿真方法建立了基于宏观各向异性的复合材料正交切削有限元模型。采用Hashin-Damage失效准则,通过定义纤维拉伸断裂、压缩屈曲极限应力及基体横向拉伸断裂、剪切断裂极限应力等数值,建立了复合材料切削加工动态物理仿真模型。通过切削力仿真值与实验值的比较,验证了仿真模型的有效性。通过对0°和90°纤维方向复合材料基体开裂和压溃的分析发现,当进入稳定切削后,基体开裂方向与纤维方向平行,而基体的压溃主要发生在刀尖周围。分析了纤维方向对复合材料亚表面损伤深度的影响,随着纤维方向角度的增加,工件亚表面裂纹损伤深度呈增长趋势。

References

[1]  Mkaddem A, El Mansori M. Finite element analysis when machining UGF-reinforced PMCs plates chip formation crack propagation and induced damage [J]. Materials & Design, 2009, 30(8): 3295-3302.
[2]  全燕鸣, 叶邦彦. 复合材料的切削加工表面结构与表面粗糙度 [J]. 复合材料学报, 2001, 18(4):128-132. Quan Yanming, Ye Bangyan. Machined surface texture and roughness of composites [J]. Acta Materiae Composite Sinica, 2001, 18(4): 128-132.
[3]  Arola D, Ramulu M. Orthogonal cutting of fiber-reinforced composites: A finite element analysis [J]. International Journal of Mechanical Sciences, 1997, 39(5): 597-613.
[4]  Ramesh M V, Seetharamu K N, Ganesan N, et al. Analysis of machining of FRPs using FEM [J]. International Journal Machine Tools and Manufacture, 1998, 38(12): 1531-1549.
[5]  Mahdi M, Zhang L C. An adaptive three dimensional finite element algorithm for the orthogonal cutting of composite materials [J]. Journal of Materials Processing Technology, 2001, 113(1): 368-372.
[6]  Mahdi M, Zhang L C. A finite element model for the orthogonal cutting of fiber reinforced composite materials [J]. Journal of Materials Processing Technology, 2001, 113(1): 373-377.
[7]  Iliescu D, Gehin D, Iordanoff I, et al. A discrete element method for the simulation of CFRP cutting [J]. Composite Science and Technology, 2010, 70(1): 79-80.
[8]  Wern C W, Ramulu M. Influence of fiber on the cutting stress stated in machining idealized glass fiber composite [J]. Journal of Strain Analysis, 1997, 32(1): 19-26.
[9]  Mkaddem A, Demirci I, Mansori M E. A micro-macro combined approach using FEM for modeling of machining of FRP composites: Cutting forces analysis [J]. Composites Science and Technology, 2008, 68(15): 3123-3127.
[10]  罗 靓, 沈 真, 杨胜春, 等. 碳纤维增强树脂基复合材料层合板低速冲击性能试验研究 [J]. 复合材料学报, 2008, 25(3): 20-24. Luo Liang, Shen Zhen, Yang Shengchun, et al. Experimental study on low-velocity impact performance of carbon fiber reinforced composite laminates [J]. Acta Materiae Composite Sinica, 2008, 25(3): 20-24.
[11]  Santiuste C, Miguélez H, Soldani X. Out-of-plane failure mechanisms in LFRP composite cutting [J]. Composite Structures, 2011, 93(11): 2706-2713.
[12]  Soldani X, Santiuste C, Miguélez H, et al. Influence of tool geometry and numerical parameters when modeling orthogonal cutting of LFRP composites [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(9): 1205-1216.
[13]  Hashin Z, Rotem A. A fatigue criterion for fiber-reinforced materials [J]. Journal of Composite Materials,1973,7(6):448-464.
[14]  Hashin Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 7(4): 329-334.
[15]  Rao G, Mahajana P, Bhatnagar N. Three-dimensional macro-mechanical finite element model for machining of unidirectional fiber reinforced polymer composites [J]. Materials Science and Engineering, 2008, 498(1-2):142-149.
[16]  Rentsch R, Pecat O, Brinksmeier E. Macro and micro process modeling of the cutting of carbon fiber reinforced plastics using FEM [J]. Procedia Engineering, 2011, 10: 1823-1828.
[17]  Santiuste C, Soldani X, Miguélez M H. Machining FEM model of long fiber composites for aeronautical components [J]. Components Structures, 2010, 92(3): 691-698.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133