Lu C, Mai Y, Yao G.Recent advances on understanding the origin of superhardness in nanocomposite coatings: A critical review [J].Journal of Materials Science, 2006, 41(3): 937-950.
[2]
Zhang S, Sun D, Fu Y, et al.Ni-toughened nc-TiN/a-SiNxnanocomposite thin films [J].Surface and Coatings Technology, 2005, 200(5-6): 1530-1534.
[3]
Veprek S.The search for novel, superhard materials [J].Journal of Vacuum Science and Technology A, 1999, 17(5): 2401-2420.
[4]
Veprek S, Niederhofer A, Moto K, et al.Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with Hem>V =80 to ≥105 GPa [J].Surface and Coatings Technology, 2000, 133-134: 152-159.
[5]
Veprek S.In handbook of ceramic hard materials [M].Riedel: Wiley-VCH Weinheim, 2000: 104.
[6]
Hao S, Delley B, Stampfl C.Structure and properties of TiN(111)/ SixNy /TiN(111) interfaces in superhard nanocomposites: First-principles investigations [J].Physical Review B, 2006, 74(3): 035402.
[7]
Kong M, Zhao W J, Wei L, et al.Investigations on the microstructure and hardening mechanism of TiN/Si3N4 nanocomposite coatings [J].Journal of Physics D: Applied Physics, 2007, 40(9): 2858-2863.
[8]
Hultman L, Bareo J, Flink A, et al.Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: Film growth experiments and ab initio calculations [J].Physical Review B, 2007, 75(15): 155437.
[9]
Zhang R F, Argon A S, Veprek S.Electronic structure, stability, and mechanism of the decohesion and shear of interfaces in superhard nanocomposites and heterostructures [J].Physical Review B, 2009, 79(24): 245426.
[10]
Chung C, Chang C, Chang S C, et al.Evolution of enhanced crystallinity and mechanical property of nanocomposite Ti-Si-N thin films using magnetron reactive co-sputtering [J].Journal of Alloys and Compounds, 2012, 537: 318-322.
[11]
Zhang R F, Veprek S.On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti-Si-N system [J].Materials Science and Engineering: A, 2006, 424(1-2): 128-137.
[12]
Zhang R F, Veprek S.Crystalline-to-amorphous transition in Ti1- x Si x N solid solution and the stability of fcc SiN studied by combined ab initio density functional theory and thermodynamic calculations [J].Physical Review B, 2007, 76(17): 4105-4110.
[13]
Zhang R F, Veprek S.Phase stabilities of self-organized nc-TiN/a-Si3N4 nanocomposites and of Ti1- x Six N solid solutions studied by ab initio calculation and thermodynamic modeling [J].Thin Solid Films, 2008, 516(8): 2264-2275.
[14]
Liu X J, Zhao L L, Ren Y, et al.The configuration and evolution of Ti-Si-N islandon TiN(001) surface: Ab initio study [J].Advanced Materials Research, 2011, 295-297: 301-306.
[15]
刘学杰, 吴 帅, 任 元.TiN(001)表面上3N1Ti1Si岛构型及其演变的第一性原理研究 [J].发光学报, 2013, 34(6): 723-727.Liu Xuejie, Wu Shuai, Ren Yuan.Configuration and evolution of 3N1Ti1Si island on TiN(001) surface: Ab initio study [J].Chinese Journal of Luminescence, 2013, 34(6): 723-727.
[16]
Liu X J, Lu F, Wu S, et al.Effects of different nitrogen-to-titanium atomic ratios on the evolution of Ti-Si-N islands on TiN(001) surfaces: First-principle studies [J].Journal of Alloys and Compounds, 2014, 586: 431-435.
[17]
Kresse G, Hafner J.Ab initio molecular dynamics for liquid metals [J].Physical Review B, 1993, 47(1): 558-561.
[18]
Kresse G, Hafner J.Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium [J].Physical Review B, 1994, 49(20): 14251-14269.
[19]
Kresse G, Furthmüller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].Physical Review B, 1996, 54(16): 11169-11186.
[20]
Kresse G, Furthmüller J.Efficiency of ab initio total energy calculations for metals and semiconductors using aplane-wave basis set [J].Computational Materials Science, 1996, 6(1): 15-50.
[21]
Kresse G, Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method [J].Physical Review B, 1999, 59(3): 1758-1775.
[22]
Vanderbilt D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J].Physical Review B, 1990, 41(11): 7892-7895.
[23]
Perdew J P, Wang Y.Accurate and simple analytic representation of the electron-gas correlation energy [J].Physical Review B, 1992, 45(23): 13244-13249.
[24]
Hendrik J, Monkhorst and James D P.Special points for Brillouin-zone integrations [J].Physical Review B, 1976, 13(12): 5188-5192.