全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于共焦点椭球构型的复合材料有效性质预测

, PP. 92-97

Keywords: 共焦点椭球构型,细观力学,有效模量,空间任意取向

Full-Text   Cite this paper   Add to My Lib

Abstract:

介绍了共焦点椭球构型,给出了基于该构型对空间任意取向复合材料模量的解析计算公式,并将其同Mori-Tanaka(MT)法、Ponte-Castaneda-Willis(PCW)方法以及Hashin-Shtrikman(HS)界限进行了比较。数值结果显示,基于该构型的预测处于MT法和PCW法所预测的值之间,并且与MT法所预测的值接近。此外,还对纤维不同的角度平均方法对有效性质的影响做了讨论。

References

[1]  Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metall, 1973, 21: 571-574.
[2]  Norris A N. A differential scheme for the effective moduli composites[J]. Mechanics of Materials, 1985, 4: 1-16.
[3]  Ponte Castaneda P, Willis J R. The effect of spatial distribution on the effective behavior of composite materials and cracked media[J]. J Mech Phys Solids, 1995, 43: 1919-1951.
[4]  Jiang C P, Tong Z H, Cheung Y K. A generalized self-consistent method accounting for fiber section shape[J]. Int Journal of Solids and Structures, 2003, 40:2589-2609.
[5]  Hashin Z, Shtrikman S. On some variational principles in anisotropic and nonhomogeneous elasticity[J]. J Mech Phys Solids, 1962, 10: 355-342.
[6]  Tandon G P, Weng G J. Average stress in the matrix and effective moduli of randomly oriented composites[J]. Composite Science and Technology, 1986, 27: 111-132.
[7]  Schjodt-Thomsen J, Pryz R. The Mori-Tanaka stiffness tensor: diagonal symmetry, complex fiber orientations and non-dilute volume fractions[J]. Mechanics of Materials, 2001,33: 531-544.
[8]  胡更开.复合材料细观塑性的二阶矩理论及其应用 .见:杜善义,等.复合材料及其结构的力学、设计、应用和评价 [M].哈尔滨:哈尔滨工业大学出版社,2000.201-216.
[9]  Kuster G T, Toksoz M N. Velocity and attenuation of seismic waves in two-phase media I: Theoretical formulation[J]. Geophysics, 1974, 39: 587-606.
[10]  Hori M, Nemat-Nasser S. Double-inclusion model and overall moduli of multiphase composites[J]. Mech Mater, 1993, 14: 189-206.
[11]  Zheng Q S, Du DX. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for the inclusion distribution[J]. J Mech Phys Solids, 2001, 49: 2765-2788.
[12]  Hill R. A self-consistent mechanics of composite material[J]. J Mech Phys Solids, 1965,13: 213-222.
[13]  Christensen R M, Lo K H. Solution for effective shear properties in three phases sphere and cylinder model[J]. J Mech Phys Solids, 1979, 11: 127-140.
[14]  胡更开, 郑泉水, 黄筑平. 复合材料有效弹性性质分析方法[J]. 力学进展, 2001, 31: 361-392.
[15]  Hu G K, Weng G J. The connections between the double-inclusion model and the Ponte Castaneda-Wills, Mori-Tanaka, and Kuster-Toksoz models[J]. Mechanics of Materials, 2000, 32: 495-503.
[16]  Hu G K, Weng G J. Some reflections on the Mori-Tanaka and Ponte Castaneda-Willis methods with randomly oriented ellipsoidal inclusions[J]. Acta Mechanica, 2000, 140: 31-40.
[17]  杜丹旭. 多相材料有效性质的理论研究 . 北京:清华大学,2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133