Hasselman D P H. Strength behavior of polycrystalline alumina subjected to thermal shock [J]. JAmCeram Soc,1970,53:490-494.
[2]
Hasselman D P H. Unified theory of thermal shock fracture initiation, crack propagation in brittle ceramics [J]. J Am Ceram Soc, 1969, 52(6): 600-604.
[3]
Tancret F, Osterstock F. The Vickers indentation technique used to evaluate thermal shock resistance of brittle materials [J]. Scripta Mater, 1997,37: 443-447.
[4]
Tancret F, Monot I, Osterstock F. Toughness and thermal shock resistance of Y2Ba2Cu3O7-x composite superconductors containing Y2BaCuO5 or Ag particles [J]. Mater Sci Eng A, 2001,298: 268-283.
[5]
Andersson T, Rowdliffe D J. Indentation thermal shock test for ceramics [J]. J Am Ceram Soc, 1996, 79(6): 1509-1514.
Santi M, Steve G R. Thermal shock resistance of sintered alumina/silicon carbide nanocomposites evaluated by indentation techniques [J]. J Am Ceram Soc, 2002,85(8): 1971-1978.
[8]
Pettersson P, Shen Z. Thermal shock resistance of α/β-sialon ceramic composites [J]. J Euro Ceram Soc, 2001,21: 999-1005.
[9]
Kim Y, Lee W J, Case E D. The measurement of the surface heat transfer coefficient for ceramics quenched into a water bath [J]. Mater Sci Enging, 1991,A145: L7-L11.
[10]
Collin M, Rowcliffe D. Analysis and prediction of thermal shock in brittle materials [J]. Acta Materialia,2000,48:1655-1665.
[11]
Ishitsuka M, Sato T, Endo T. Grain-size dependence of thermal-shock resistance of yttria-doped tetragonal zirconia polycrystals [J]. J Am Ceram Soc, 1990, 73(8): 2523-2525.