全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

PP/PET原位成纤复合材料的增强效应

, PP. 33-39

Keywords: 聚对苯二甲酸乙二醇酯,聚丙烯,原位复合材料,组成比,成纤性,增强效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

用挤出-拉伸-注塑法制得了PP/PET原位成纤增强复合材料,以不拉伸的普通共混材料作对照,研究了PET质量含量(Cm)对PET成纤性和材料拉伸强度(σt)及模量(E)的影响及其作用机制。结果表明,Cm由0增至20%时,PET纤维数量增多,纤维直径及其分散性以Cm=15%为界先减少后增大;材料的σt、E在Cm=15%时有最大值,分别比纯PP提高约20%和70%。熔体拉伸时分散相液滴的聚结-形变成纤对PET相形态随Cm的变化起关键作用,分散相对基体增强效应与两相界面缺陷效应的相互竞争,纤维对基体增刚作用受纤维数量和细度的双重控制,分别是决定材料σt~Cm、E~Cm关系的支配因素。

References

[1]  Willis J M, Caldas V, Favis B D. Processing-morphology relationships of compatibilized polyolefin/polyamide blends[J]. J Mater Sci,1991,26:4742-4750.
[2]  Gonzalez-Nunez R, Favis B D, Carreau P J, et al. Factors influencing the formation of elongated morphologies in immiscible polymer blends generated during melt processing[J]. Polym Eng Sci,1993,33:851-859.
[3]  Gonzalez-Nunez R, De Kee D, Favis B D. The influence of coalescence on the morphology of the minor phase in melt-drawn PA6/HDPE blends[J]. Polymer,1996,37:4689-4693.
[4]  Assouline E, Wachtel E, Grigull S, et al. Lamellar twisting in α isotactic PP transcrystallinity investigated by synchrotron microbeam X-ray diffraction[J]. Polymer,2001,42:6231-6237.
[5]  Nuriel H, Klein N, Marom G. Effect of the transcrystalline layer on the mechanical properties of composite materials in the fibre direction[J]. Compos Sci Technol,1999,59:1685-1690.
[6]  Cheremisinoff N P. Handbook of engineering polymeric materials . New York: Marcel Dekker Inc, 1999. 585.
[7]  Crevecoeur G,Groeninckx G. Fibril formation in in situ composites of a thermotropic liquid crystalline polymer in a thermoplastic matrix[J]. J Appl Polym Sci,1993,49:839-849.
[8]  Evastatiev M,Schultz J M,Petrovich S, et al. In situ poly-mer/polymer composites from PET, PA6 and PA66 blends[J]. Polym Eng Sci, 2001,41:192-204.
[9]  陈鸣才,黄玉惠,赵树录,等. PP/PET共混自增强材料的研究[J]. 应用化学,1995, 12(6): 77-79.
[10]  黎学东,陈鸣才,黄玉惠,等. PP/PA6原位成纤复合材料(Ⅰ):形态与力学性能[J]. 复合材料学报,1998,15(2):57-61.
[11]  黎学东,陈鸣才,黄玉惠,等. PP/PA6原位成纤复合材料(Ⅱ):加工条件对性能、形态的影响[J].复合材料学报,1998, 15(2): 62-67.
[12]  沈经纬,黄文艺,陈晓梅. PP/PA66原位复合材料的增强和增韧效应[J]. 高分子学报, 2003(2): 278-282.
[13]  Huang W Y,Shen J W,Chen X M. Effect of composition on phase morphology and mechanical properties of PP/PA66 in-situ composites via extrusion-drawing-injection method[J]. J Mater Sci,2003,38:541-547.
[14]  Huang W Y,Shen J W,Chen X M, et al.Factors influencing the fiberization and mechanical properties of PP/PA66 in situ composites[J]. Polym Intern, 2003, 52: 1131-1135.
[15]  Tzur A,Narkis M,Siegmann A. Immiscible EVA and nylon blends processed below nylon melting temperature[J]. J Appl Polym Sci,2001,82:661-671.
[16]  Li Z M, Yang M B, Huang R, et al. PET/PE composite based on in-situ microfiber formation[J]. Polym Plast Eng Tech,2002, 41(1): 19-32.
[17]  Elemendrop J J, Van Der Vegt A K. A study on polymer blending microrheology IV: The influence of coalescence on blend morphology origination[J]. Polym Eng Sci,1986,26:1332-1338.
[18]  Tsebrenko M V, Danilova G P, Malkin A Y A. Fracture of ultrafine fibers in the flow of mixtures of non-Newtonian polymer melts[J]. J Non-Newton Fluid Mech,1989,31:1-26.
[19]  Favis B D, Willis J M. Phase size/composition dependence in immiscible blends: Experimental and theoretical considerations[J]. J Polym Sci,Part B:Polym Phys,1990,28:2259-2269.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133