全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

硬化水泥浆体弹性模量细观力学模型

, PP. 184-189

Keywords: 硅酸盐水泥浆体,有效弹性模量,复合材料力学,有孔介质力学,细观力学模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用复合材料力学理论和有孔介质力学(Poromechanics)理论建立了一个描述硬化硅酸盐水泥浆体弹性模量的细观力学模型,将硬化水泥浆体从不同尺度上划分为4个层次,即C-S-H凝胶、水泥水化产物、水泥浆体骨架和水泥浆体,分别应用不同的细观力学模型予以描述:将C-S-H视为饱和的有孔介质;应用Mori-Tanaka模型描述水泥水化产物的弹性性质;应用三相模型(Three-phasemodel)模拟水泥浆体骨架的有效弹性模量;最后,再次应用Mori-Tanaka模型和有孔介质理论,计算水泥浆体的排水和不排水弹性模量(Drainedandundrainedelasticmoduli)。该模型所需要的参数为水泥浆体各个组成部分的自身弹性性质,使用方便。通过预测文献中的实测结果,证明了该模型的有效性。

References

[1]  郑建军, 周欣竹, 姜 璐. 混凝土杨氏模量预测的三相复合球模型 [J]. 复合材料学报, 2005, 22(1): 102 -107. Zheng Jianjun, Zhou Xinzhu, Jiang Lu. Three phase compo-site sphere model for the prediction of Youngs modulus of concrete [J]. Acta Materiae Compositae Sinica, 2005, 22(1): 102 -107.
[2]  Bernard O, Ulm F, Lemarchand E. A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials [J]. Cement and Concrete Research, 2003, 33(9): 1293 -1309.
[3]  Haecker C J, Garboczi G J, Bullarda J W, et al. Modeling the linear elastic properties of Portland cement paste [J]. Cement and Concrete Research, 2005, 35(10): 1948 -1960.
[4]  李春江, 杨庆生. 水泥水化过程的细观力学模型与性能演化 [J]. 复合材料学报, 2006, 23(1): 117 -123. Li Chunjiang, Yang Qingsheng. Micro-mechanical model and property evolution for hydration of cements [J]. Acta Mate-riae Compositae Sinica, 2006, 23(1): 117 -123.
[5]  Christensen R M. Mechanics of composite materials [M]. New York: John Wiley and Sons, 1979: 31 -72.
[6]  Coussy O. Poromechanics [M]. New York: John Wiley and Sons, 2004: 37 -112.
[7]  Acker P. Micromechanical analysis of creep and shrinkage mechanisms //Ulm F J, Bazant Z P, Wittmann F H, eds. Creep, Shrinkage and Durability Mechanics of Concrete and Other Quasi-brittle Materials. Cambridge, Massachusetts State: Elsevier Science Publisher B. V. of Amsterdam, 2001: 15 -25.
[8]  Monteiro P J M, Chang C T. The elastic moduli of calcium hydroxide [J]. Cement and Concrete Research, 1995, 25(8): 1605 -1609.
[9]  Ulm F J, Constantinides G, Heukamp F H. Is concrete a poromechanics material?A multiscale investigation of poroelastic properties [J]. Materials and Structures, 2004, 37(265): 43 -58.
[10]  Lide D R. CRC handbook of chemistry and physics, 78th edition [M]. Boca Raton: CRC Press, 1997: 6 -127.
[11]  Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions [J]. Acta Metall, 1973, 21(5): 571 -574.
[12]  Powers T C, Brownyard T L. Studies of the physical properties of hardened Portland cement paste [J]. J Am Concr Inst (Proc), 1947, 43: 101 -132, 249 -336, 469 -505, 549 -602, 669 -712, 845 -880, 933 -992.
[13]  Christensen R M. A critical evaluation for a class of micro-mechanics models [J]. Journal of Mechanics and Physics of Solids, 1990, 38(3): 379 -340.
[14]  Sokolnikoff I S. Mathematical theory of elasticity [M]. New York: McGraw-Hill, 1956: 56 -71.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133