全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用光纤干涉仪检测I形复合材料梁腹板/翼缘连接处的分层

, PP. 143-150

Keywords: Mach-Zehnder光纤干涉仪,分层,复合材料,腹板,脉冲回波

Full-Text   Cite this paper   Add to My Lib

Abstract:

介绍了一种在超声回弹波频谱分析基础上用光纤干涉仪来检测I形复合材料梁腹板/翼缘连接处分层的方法,利用超声发射器在I形梁中产生应力波,用表面粘贴的光纤干涉仪来接收应力波产生的输出信号,对此信号进行频谱分析可找到I形梁的分层位置。理论分析和实验都表明了此方法探测复合材料梁腹板/翼缘连接处分层的可行性。

References

[1]  Brown D A, Cameron C B, Keolian R M, et al. A symmetric 3×3 coupler based demodulator for fiber optic interferometric sensors // Proceedings SPIE. 1991, 1584: 328 -335.
[2]  Aref A J, Parsons I D. Design and analysis procedures for a novel fiber reinforced plastic bridge deck // El-Badry M, ed. Proceedings of the 2nd International Conference on Advanced Composite Materials in Bridges and Structures. Montreal, Quebec, Canada: CSCE, 1996: 743 -750.
[3]  Heigemier G A, Karbhari V M, Seible F, Zhao L. Fiber reinforced composite decks for infrastructure renewal-results and issues // Proceedings of International Composites Expo. Nashville, Tennessee: Composites Fabricators Association, 1997: session. 3 -C, 1 -6.
[4]  Zureick A H, Shih B, Munley E. Fiber-reinforced polymeric bridge decks [J]. Struct Eng Rev, 1995, 7(3): 257 -266.
[5]  Liskey K. Structural applications of pultruded composite products // Proceedings of the Specialty Conference on Advanced Composite Materials in Civil Engineering Structures. New York: ASCE, 1991: 182 -193..
[6]  Turner M K, Harries K A, Petrou M F, et al. In situ structural evaluation of a GFRP bridge deck system [J]. Composite Structures, 2004, 65(2): 157 -165.
[7]  Qiao P, Davalos J F, Brown B. A systematic analysis and design approach for single-span FRP deck/stringer bridges [J]. Composite Part B, 2000, 31(6/7): 593 -609.
[8]  Kumar P, Chandrashekhara K, Nanni A. Structural perfor-mance of a FRP bridge deck [J]. Construction and Building Materials, 2004, 18(1): 35 -47.
[9]  Keller T, Schollmayer M. Plate bending behavior of a pultruded GFRP bridge deck system [J]. Composite Structures, 2004, 64(3/4): 285 -295.
[10]  Kim H Y, Hwang Y K, Park K T, et al. Fiber reinforced plastic deck profile for Ⅰ -girder bridges [J]. Composite Structures, 2005, 67(4): 411 -416.
[11]  Burgueo R, Karbhari V M, Seible F, et al. Experimental dynamic characterization of an FRP composite bridge superstructure assembly [J]. Composite Structures, 2001, 54(4): 427 -444.
[12]  Gsell D, Motavalli M. Indoor cable-stayed GFRP bridge at EMPA // Proceedings of the 4th International Conference on Advanced Composite Materials in Bridges and Structures. Switzerland: Calgary, 2004.
[13]  Gan L H, Ye L, Mai Y W. Simulations of mechanical performance of pultruded Ⅰ -beams with various flange-web conjunctions [J]. Composites Part B, 1999, 30(4): 423 -429.
[14]  Bank L C, Mosallam A S, Gonsior H E. Beam-to-column connections for pultruded FRP structures // Proceedings of the 1st Materials Engineering Congress. New York: ASCE, 1990: 804 -813.
[15]  Carrion J E, LaFave’ J M, Hjelmstad K D. Experimental behavior of monolithic composite cuff connections for fiber reinforced plastic box sections [J]. Composite Structures, 2005, 67(3): 333 -345.
[16]  Heredia F E, He M Y, Evans A G. Mechanical performance of ceramic matrix composite Ⅰ -beams [J]. Composites Part A, 1996, 27A: 1157 -1167.
[17]  Carino N J, Sansalone M, Hsu N N. A point source-point receiver technique for flaw detection in concrete [J]. ACI, 1986, 83(2): 199 -208.
[18]  Sansalone M, Carino N J. Laboratory and field study of the impact-echo method for flaw detection in concrete // Lew H S, ed. Nondestructive Testing of Concrete, ACI SP-112. Detroit, Michigan: American Concrete Institute, 1988: 1 -20.
[19]  Akkaya Y, Voigt T, Subramaniam K V, et al. Nondestructive measurement of concrete strength gain by an ultrasonic wave reflection method [J]. Materials and Structures, 2003, 31(262): 1 -35.
[20]  Wevers. Listening to the sound of materials: Acoustic emission for the analysis of material behaviour [J]. NDT & E International, 1997, 30(2): 99 -106.
[21]  Lin Y, Sansalone M. Detecting flaws in concrete beams and columns using the impact-echo method [J]. ACI Material Journal, 1992, 89(4): 394 -405.
[22]  Liu K X, Measures R M. Signal processing techniques for interferometric fiber-optic strain sensors [J]. J of Intell Mater Syst and Struct, 1992, 3(3): 432 -461.
[23]  Tani J, Cheng G G, Qiu J. Effectiveness and limits of self-sensing piezoelectric actuators // The International Workshop on Structural Health Monitoring 2001 (Current Status and Perspectives). CA, USA: Stanford, 2001: 502 -514.
[24]  Chen X, Ansari F. Fiber optic stress wave sensor for detection of internal flaws in concrete structures [J]. Journal of Intelligent Material Systems and Structures, 1999, 10(4): 274 -279.
[25]  Xu Y, Leung C K Y, Yang Z L, et al. A new fiber optic based method for delamination detection in composites [J]. Struc-tural Health Monitoring, 2003, 2(3): 205 -223.
[26]  江 毅, 许 颖, Leung C K Y. 埋入光纤Mach-Zehnder干涉仪检测复合材料梁的分层 [J]. 复合材料学报, 2004, 21(1): 129 -133. Jiang Yi, Xu Ying, Leung C K Y. Embedded fiber optical Mach-Zehnder interferometer for the detection of delamination in composites [J]. Acta Materiae Compositae Sinica, 2004, 21(1): 129 -133.
[27]  Sirkis J S, Haslach H W. Interferometric strain measurement by arbitrarily configured, surface-mounted, optical fibers [J]. Journal of Lightwave Technology, 1990, 8(10): 1497 -1503.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133