Curry J D. Mechanical properties of mother of pearl in tension [J]. Proc R Soc London B, 1977, 196: 443 -463.
[2]
Jackson A P, Vincent J F V, Turner R M. The mechanical design of nacre [J]. Proc R Soc Lond B, 1988, 234: 415 -440.
[3]
Ji Baohua, Gao Huajian. Mechanical properties of nanostructure of biological materials [J]. J Mech Phys Solids, 2004, 52(9): 1963 -1990.
[4]
Almqvist N, Thomson N H, Smith B L, Stucky G D, Morse D E, Hansma P K. Methods for fabricating and characterizing a new generation of biomimetic materials [J]. Mater Sci Eng C, 1999, 7(1): 37 -43.
[5]
Gao Huajian, Ji Baohua. Modeling fracture in nanomaterials via a virtual internal bond method [J]. Eng Fract Mech, 2003, 70(14): 1777 -1791.
[6]
Wang R Z, Suo Z, Evans A G, Yao N, Aksay I A. Deformation mechanisms in nacre [J]. Journal of Materials Research, 2001, 16(9): 2485 -2493.
[7]
Menig R, Meyers M H, Meyers M A, Vecchio S K. Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells [J]. Materials Science and Engineering, 2001, A297(1/2): 203 -211.
[8]
Kotha S P, Li Y, Guzelsu N. Micromechanical model of nacre tested in tension [J]. Journal of Materials Science, 2001, 36(8): 2001 -2007.
[9]
Song F, Soh A K, Bai Y L. Structural and mechanical properties of the organic matrix layers of nacre [J]. Biomaterials, 2003, 24(20): 3623 -3631.
[10]
Song F, Bai Y L. Effects of nanostructures on the fracture strength of the interfaces in nacre [J]. Journal of Materials Research, 2003, 18(8): 1741 -1744.