全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多夹杂问题的分步格式

, PP. 128-134

Keywords: 复合材料,多夹杂,有效性能,分步格式

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种计算复合材料有效性能的分步格式,用以解决高体分比和多夹杂复合材料的有效性能计算。对于多类夹杂问题,模型分步处理每一类夹杂,并分步计算复合材料的有效性能。给出了多夹杂复合材料性能的数值计算结果。数值结果与实验数据符合很好。研究表明,对于二元复合材料,现有的分步格式能够很好地处理接近于1的高体分比夹杂问题,其结果与微分法的结果基本相同,分步格式能够有效地处理具有不同形状和尺寸的多类夹杂问题。

References

[1]  Hashin Z. The differential scheme and its application to cracked materials [J]. Journal of Mechanics and Physics of Solids, 1988, 36: 719 -736.
[2]  Hori M, Nemat-Nasser S. Double-inclusion model and overall moduli of multi-phase composites [J]. Mechanics of Materials, 1993, 14(3): 189 -206.
[3]  Li J Y. Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials [J]. International Journal of Engineering Science, 2000, 38: 1993 -2011.
[4]  Xu H H K, Smith D T, Simon C G. Strong and bioactive composites containing nano-silica-fused whiskers for bone repair [J]. Biomaterials, 2004, 25: 4615 -4626.
[5]  Taya M, Chou T W. On two kinds of ellipsoidal in homogeneities in an infinite elastic body: An application to a hybrid composite [J]. International Journal of Solids and Structures, 1981, 17: 553 -563.
[6]  郑代华, 杨庆生. 多相复合材料的有效模量预测 [J]. 铁道学报, 2000, 22(2), 86 -89. Zheng Daihua, Yang Qingsheng. Prediction of the effective properties of composites with multi kinds of inclusions [J]. Journal of the China Railway Society, 2000, 22(2): 86 -89.
[7]  Yang Qingsheng, Qin Qinghua. Modelling the effective elasto-plastic properties of unidirectional composites reinforced by fibre bundles under transverse tension and shear loading [J]. Materials Science and Engineering A, 2003, 344 (1/2): 140 -145.
[8]  Lin S C, Mura T. Elastic fields of inclusions in anisotropic media Ⅱ [J]. Physica Status Solidi A, 1973, 15: 281 -285.
[9]  Tsai S W. Structural behavior of composite materials, CR-71 . Washington: NASA, 1964.
[10]  Hashin Z, Shtrikman S. A variational approach to the theory of elastic behavior of multiphase materials [J]. Journal of Mechanics and Physics of Solids, 1963, 11: 127 -140.
[11]  Christensen R M. A critical evaluation for a class of micromechanics models [J]. Journal of Mechanics and Physics of Solids, 1990, 38: 379 -404.
[12]  Mura T. Micromechanics of defect in solids [M]. 2nd ed. New York: Martins Nijhoff, 1987: 304.
[13]  Nemat-Nasser S, Hori M. Micromechanics: Overall properties of heterogeneous materials [M]. Amsterdam: North Holland Publisher, 1993: 381.
[14]  Bensoussan A, Lion J L, Papanicolaou G. Asymptotic analysis for periodic structures [M]. Amsterdam: North Holland Publisher, 1978: 20.
[15]  Sanchez-Palencia E. Non-hongeneous media and vibration theory [M]. Berlin-Heidelberg: Springer-Verlag, 1980: 127.
[16]  Hohe J, Becker W. Effective stress-strain relations for two dimensional cellular sandwich cores: Homogenization, material models, and properties [J]. Applied Mechanics Review, 2002, 55(1): 61 -87.
[17]  Yang Q S, Becker W. A comparative investigation of different homogenization methods for prediction of the macroscopic properties of composites [J]. Computer Modeling in Engineering and Sciences, 2004, 6(4): 319 -332.
[18]  Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems [J]. Proceedings of Royal Society London, Serial A, 1957, 241: 376 -396.
[19]  Budiansky B. On the elastic moduli of some heterogeneous materials [J]. Journal of Mechanics and Physics of Solids, 1965, 13: 223 -227.
[20]  Hill R. A self-consistent mechanics of composite materials [J]. Journal of Mechanics and Physics of Solids, 1965, 13: 213 -222.
[21]  Chou T W, Nomura S, Taya M. A self-consistent approach to the elastic stiffness of short-fiber composites [J]. Journal of Composite Materials, 1980, 14: 178 -188.
[22]  Christensen R M, Lo K H. Solutions for effective shear properties in three sphere and cylinder models [J]. Journal of Mechanics and Physics of Solids, 1979, 27: 315 -330.
[23]  Christensen R M. A critical evaluation for a class of micromechanics models [J]. Journal of Mechanics and Physics of Solids, 1990, 38: 379 -406.
[24]  Mori T, Tanaka K. Average stress in matrix and average energy of materials with misfitting inclusion [J]. Acta Metall, 1973, 21: 571 -576.
[25]  Weng G J. Some elastic properties of reinforced solids with special reference to isotropic ones containing spherical inclusions [J]. International Journal of Engineering Sciences, 1984, 22: 845 -856.
[26]  Beveniste Y. A new approach to the application of Mori-Tanakas theory in composite materials [J]. Mechanics of Materials, 1987, 6: 147 -157.
[27]  Yang Qingsheng, Tang L M, Chen H R. Self-consistent finite element method: A new method for predicting effective properties of inclusion media [J]. Finite Elements in Analysis and Design, 1994, 17: 247 -257.
[28]  Norris A N. A differential scheme for the effective moduli of composites [J]. Mechanics of Materials, 1985, 4: 1 -16.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133