Hashin Z. The differential scheme and its application to cracked materials [J]. Journal of Mechanics and Physics of Solids, 1988, 36: 719 -736.
[2]
Hori M, Nemat-Nasser S. Double-inclusion model and overall moduli of multi-phase composites [J]. Mechanics of Materials, 1993, 14(3): 189 -206.
[3]
Li J Y. Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials [J]. International Journal of Engineering Science, 2000, 38: 1993 -2011.
[4]
Xu H H K, Smith D T, Simon C G. Strong and bioactive composites containing nano-silica-fused whiskers for bone repair [J]. Biomaterials, 2004, 25: 4615 -4626.
[5]
Taya M, Chou T W. On two kinds of ellipsoidal in homogeneities in an infinite elastic body: An application to a hybrid composite [J]. International Journal of Solids and Structures, 1981, 17: 553 -563.
[6]
郑代华, 杨庆生. 多相复合材料的有效模量预测 [J]. 铁道学报, 2000, 22(2), 86 -89. Zheng Daihua, Yang Qingsheng. Prediction of the effective properties of composites with multi kinds of inclusions [J]. Journal of the China Railway Society, 2000, 22(2): 86 -89.
[7]
Yang Qingsheng, Qin Qinghua. Modelling the effective elasto-plastic properties of unidirectional composites reinforced by fibre bundles under transverse tension and shear loading [J]. Materials Science and Engineering A, 2003, 344 (1/2): 140 -145.
[8]
Lin S C, Mura T. Elastic fields of inclusions in anisotropic media Ⅱ [J]. Physica Status Solidi A, 1973, 15: 281 -285.
[9]
Tsai S W. Structural behavior of composite materials, CR-71 . Washington: NASA, 1964.
[10]
Hashin Z, Shtrikman S. A variational approach to the theory of elastic behavior of multiphase materials [J]. Journal of Mechanics and Physics of Solids, 1963, 11: 127 -140.
[11]
Christensen R M. A critical evaluation for a class of micromechanics models [J]. Journal of Mechanics and Physics of Solids, 1990, 38: 379 -404.
[12]
Mura T. Micromechanics of defect in solids [M]. 2nd ed. New York: Martins Nijhoff, 1987: 304.
[13]
Nemat-Nasser S, Hori M. Micromechanics: Overall properties of heterogeneous materials [M]. Amsterdam: North Holland Publisher, 1993: 381.
[14]
Bensoussan A, Lion J L, Papanicolaou G. Asymptotic analysis for periodic structures [M]. Amsterdam: North Holland Publisher, 1978: 20.
[15]
Sanchez-Palencia E. Non-hongeneous media and vibration theory [M]. Berlin-Heidelberg: Springer-Verlag, 1980: 127.
[16]
Hohe J, Becker W. Effective stress-strain relations for two dimensional cellular sandwich cores: Homogenization, material models, and properties [J]. Applied Mechanics Review, 2002, 55(1): 61 -87.
[17]
Yang Q S, Becker W. A comparative investigation of different homogenization methods for prediction of the macroscopic properties of composites [J]. Computer Modeling in Engineering and Sciences, 2004, 6(4): 319 -332.
[18]
Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems [J]. Proceedings of Royal Society London, Serial A, 1957, 241: 376 -396.
[19]
Budiansky B. On the elastic moduli of some heterogeneous materials [J]. Journal of Mechanics and Physics of Solids, 1965, 13: 223 -227.
[20]
Hill R. A self-consistent mechanics of composite materials [J]. Journal of Mechanics and Physics of Solids, 1965, 13: 213 -222.
[21]
Chou T W, Nomura S, Taya M. A self-consistent approach to the elastic stiffness of short-fiber composites [J]. Journal of Composite Materials, 1980, 14: 178 -188.
[22]
Christensen R M, Lo K H. Solutions for effective shear properties in three sphere and cylinder models [J]. Journal of Mechanics and Physics of Solids, 1979, 27: 315 -330.
[23]
Christensen R M. A critical evaluation for a class of micromechanics models [J]. Journal of Mechanics and Physics of Solids, 1990, 38: 379 -406.
[24]
Mori T, Tanaka K. Average stress in matrix and average energy of materials with misfitting inclusion [J]. Acta Metall, 1973, 21: 571 -576.
[25]
Weng G J. Some elastic properties of reinforced solids with special reference to isotropic ones containing spherical inclusions [J]. International Journal of Engineering Sciences, 1984, 22: 845 -856.
[26]
Beveniste Y. A new approach to the application of Mori-Tanakas theory in composite materials [J]. Mechanics of Materials, 1987, 6: 147 -157.
[27]
Yang Qingsheng, Tang L M, Chen H R. Self-consistent finite element method: A new method for predicting effective properties of inclusion media [J]. Finite Elements in Analysis and Design, 1994, 17: 247 -257.
[28]
Norris A N. A differential scheme for the effective moduli of composites [J]. Mechanics of Materials, 1985, 4: 1 -16.