全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新拌水泥浆体中邻近胶凝材料粒子表面最近间距分布的解析解

, PP. 127-134

Keywords: 邻近粒子表面最近间距,Rosin-Rammler分布,固相体积分数,粒径分布,概率,水胶比,胶凝材料细度

Full-Text   Cite this paper   Add to My Lib

Abstract:

依据Torquato的最邻近表面函数公式,推导了新拌水泥浆体邻近水泥粒子表面最近间距分布的解析解,并采用计算机模拟生成了1个水泥浆体结构模型,选取邻近粒子表面最近间距概率密度分布曲线、区间概率曲线和累计概率分布曲线这3个函数检验模拟结果与理论结果之间的差别。结果表明,该解析解与计算机模拟实验结果吻合良好。利用该解析解,以Rosin-Rammler分布为例,研究了胶凝材料细度以及水胶比对邻近水泥粒子表面最近间距分布及其平均值的影响。结果显示,水泥细度对邻近粒子表面最近间距平均值的影响高于水胶比的影响。邻近粒子表面最近间距解析解的获得,不但为基于不同粒径分布以及尺度范围粉体之间搭配的高粉体初始堆积密度的实现提供了依据,而且对多尺度模拟方法中选取各级模型的尺度、量化粉煤灰浆体中粉煤灰颗粒的微集料效应、了解邻近集料间的交互作用程度以及界面重叠程度等问题具有参考价值。

References

[1]  Thornton C. Numerical simulations of discrete particle systems [J]. Powder Tech, 2000, 109 (1/3): 1 -298.
[2]  Stroeven M. Discrete numerical modeling of composite materials [M]. Delft: Delft University Press, 1999: 224.
[3]  Torquato S. Random heterogeneous materials: Microstructure and macroscopic properties [M]. New York: Springer-Verlag, 2002: 1 -176.
[4]  Lu B, Torquato S. Nearest surface distribution functions for polydispersed particle systems [J]. Phys Rev A, 1992, 45(8): 5530 -5544.
[5]  Percus J K, Yevick G J. Analysis of classical statistical mechanics by means of collective coordinates [J]. Phys Rev, 1958, 110 (1): 1 -13.
[6]  Lebowitz J L, Helfand E, Praesegaard E. Scaled particle theory of fluid mixtures [J]. J Chem Phys, 1965, 43: 774 -779.
[7]  Mansoori G A, Carnahan N F, Starling K E, et al . Equilibrium thermodynamic properties of the mixture of hard spheres [J]. J Chem Phys , 1971, 54(4): 1523 -1525.
[8]  陈惠苏, 孙 伟, Stroeven P, 等. 混凝土中邻近集料表面最近间距分布的计算机模拟 [J]. 硅酸盐学报, 2004, 32(4): 422 -427. Chen Huisu, Sun Wei, Stroeven P, et al. Computer simulation of the nearest surface distance distribution between neighboring aggregate grains in concrete [J]. J Chin Ceram Soc, 2004, 32(4): 422 -427.
[9]  陈惠苏, 孙 伟, 蒋金洋, 等. 砂浆中邻近集料表面最近间距分布的数值模拟 [J]. 复合材料学报, 2005, 22(4): 100-107. Chen Huisu, Sun Wei, Jiang Jinyang, et al . Numerical simulation on the nearest surface spacing distribution between neighboring aggregate grains in mortar [J]. Acta Materiae Compositae Sinica , 2005, 22(4): 100 -107.
[10]  Freudenthal A M. The inelastic behavior of engineering materials and structures [M]. New York: John Wiley & Sons, 1950: 1 -26.
[11]  Gray W A. The packing of solid particles [M]. London: Chapman and Hall, 1969: 1 -13.
[12]  German R M. Particle packing characteristics [M]. Princeton: Metal Powder Industries Federation, 1989: 1 -37.
[13]  Fuller W B, Thompson S E. The laws of proportioning concrete [J]. Journal of Transportation Division, American Society of Civil Engineers, 1907, 59(1): 67 -143.
[14]  Yu A B, Zou R P. Prediction of the porosity of particle mixtures: A review [J]. KONA Powder and Particle, 1998, 16(1): 68 -81.
[15]  Yu A B, Zou R P, Standish N. Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures [J]. Industrial & Engineering Chemistry Research, 1996, 35(10): 3730 -3741.
[16]  Latham J P, Munjiza A, Lu Y. On the prediction of void porosity and packing of rock particulates [J]. Powder Technology , 2002, 125 (1):10 -27.
[17]  Peronius N, Sweeting T J. On the correlation of minimum porosity with particle size distribution [J]. Powder Technology, 1985, 42(2):113 -121.
[18]  Walraven J C. Aggregate interlock : A theoretical and experimental analysis [M]. Delft : Delft University Press, 1980, 67.
[19]  Zheng J J. Mesostructure of concrete: Stereological analysis and some mechanical implications [M]. Delft: Delft University Press, 2000:19 -20.
[20]  van Breugel K. Simulation of hydration and formation of structure in hardening cement-based materials [M]. 2nd ed. Delft: Delft University Press, 1997: 305.
[21]  Chen H S, Ye G, Stroeven P. Computer simulation of structure of hydrated cement paste enclosed by interfacial transition zones in concrete / / Setzer M J, Palecki S, eds. Proceedings of International Conference on Durability of High Performance Concrete and Final Workshop of CONLIFE. Freiburg: AEDIFICATIO Publishers, 2004: 133 -144.
[22]  Chen H S, Stroeven P, Ye G, et al. Simulation of influence of aggregate surface spacing on the microstructure of fresh and hardened interfacial transition zone / / Banthia N, Uomoto T, Bentur A, et al, eds. Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications(CD-ROM). Vancouver: University of British Columbia, 2005: 11.
[23]  Goldman A, Bentur A. Influence of microfillers on enhancement of concrete strength [J]. Cem Concr Res, 1993, 23(4): 962 -972.
[24]  Yang R Y, Zou R P, Yu A B. Computer simulation of the packing of fine particles [J]. Phys Rev E , 2000, 62(3): 3900 -3908.
[25]  Jia X, Gopinathan N, Williams R A. Modeling complex packing structures and their thermal properties [J]. Advance Power Technology, 2002, 13(1): 55 -71.
[26]  Latham J P, Munjiza A. The modelling of particle system with real shapes [J]. Philosophical Transactions, Mathematical, Physical, and Engineering Sciences, 2004, 362(1882): 1953 -1972.
[27]  Stroeven P. Implications of the law of aggregate of matter in concrete technology / / Brandt A M, Li V C, Marshall I H, eds. Brittle Matrix Composites 7. Warsaw: ZTUREK Research-Scientific Institute, 2003: 129 -142.
[28]  Hashin Z. Analysis of composite materials: A survey [J]. Journal of Applied Mechanics, 1983, 50(3): 481-505.
[29]  Chen Huisu, Sun Wei, Stroeven P, et al . Analytical solution of the nearest surface spacing between neighboring aggregate grains in cementitious composites [J] . J Chin Ceram Soc(硅酸盐学报), 2005, 33(7): 859 -863; 870.
[30]  Raabe D, Dierk R. Computational materials science: The simulation of materials microstructures and properties [M] . Weiheim: Wiley-VCH, 1998: 1 -12.
[31]  孙 伟, Mandel J A. 纤维间距对界面层的影响 [J]. 硅酸盐学报, 1989, 17(3): 266 -271. Sun Wei, Mandel J A. The effect of fiber spacing on the interfacial layer [J]. J Chin Ceram Soc, 1989, 17(3): 266 -271.
[32]  陈惠苏, 孙 伟, Stroeven P. 水泥基复合材料界面过渡区体积分数的定量计算 [J]. 复合材料学报, 2006, 23(2): 133 -142. Chen, Huisu, Sun Wei, Stroeven P. Quantitative solution of volume fraction of interface in cementitious composites[J]. Acta Materiae Compositae Sinica, 2006, 23(2): 133 -142.
[33]  Diamond S. Percolation due to overlapping ITZs in laboratory mortars: A microstructural evaluation [J]. Cem Concr Res, 2003, 33(7): 949 -955.
[34]  Wang A Q, Zhang C Z, Sun W. Fly ash effects Ⅲ : The microaggregate effect of fly ash [J]. Cem Concr Res, 2004, 34(11): 2061 -2066.
[35]  Zimmerman R W, King M S, Monteiro P J M. The elastic moduli of mortar as a porous-granular material [J]. Cem Concr Res, 1986, 16(2): 239 -245.
[36]  Kachanov M, Sevostianov I. On quantitative characterization of microstructures and effective properties [J]. Int J Solids Struct, 2005, 42(2): 309 -336.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133