全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三维四向编织CMCs拉伸性能及损伤演化数值预测

, PP. 1543-1550

Keywords: 陶瓷基复合材料,三维编织,本构关系,损伤破坏,强度预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

发展了一种能够预测三维四向编织陶瓷基复合材料(3D-B-CMCs)拉伸模量与强度以及损伤演化过程的数值计算方法.首先,利用复合圆柱(CCA)和全局载荷分担(GLS)两种模型预测了纤维束的弹性模量和拉伸强度;然后,利用微焦点CT技术建立了能够反映3D-B-CMCs真实编织几何结构的胞元模型;其次,采用Hashin纤维束失效模型以及考虑单元尺寸的各向异性损伤力学本构模型,编制了ABAQUS/UMAT子程序,对3D-B-CMCs材料宏观拉伸的整个过程进行了计算模拟,预测了宏观拉伸应力-应变曲线,并与试验结果相吻合,证明了所建立方法的合理性和UMAT程序的有效性.同时,研究和讨论了拉伸过程中材料内部不同的损伤破坏模式对复合材料整体力学性能的影响,为材料的疲劳和蠕变等力学行为的内部损伤演化提供了依据.

References

[1]  于海蛟. 多层界面制备、表征及其对SiC_f/SiC复合材料性能的影响[D]. 长沙: 国防科学技术大学, 2011. Yu Haijiao. Preparation and characterization of multilayered interface and its influence on properties of SiC_f/SiC composites[D]. Changsha: National University of Defence Technology, 2011.
[2]  胡海峰, 张玉娣, 邹世钦, 等. SiC/SiC复合材料及其在航空发动机上的应用[J]. 复合材料制造, 2010(6): 90-91. Hu Haifeng, Zhang Yudi, Zou Shiqin, et al. SiC/SiC composites and its application on aeroengine[J]. Composites Manufacturing, 2010(6): 90-91.
[3]  Tan P, Tong L, Steven G P. Modelling for predicting the mechanical properties of textile composites—A review[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(11): 903-922.
[4]  Chen L, Tao X M, Choy C L. On the microstructure of three-dimensional braided performs[J]. Composites Science and Technology, 1999, 59(3): 391-404.
[5]  Li D S, Li J L, Chen Li, et al. Finite element analysis of mechanical properties of 3D four-directional rectangular braided composites Part 1: microgeometry and 3D finite element model [J]. Applied Composite Materials, 2010, 17(4): 373-387.
[6]  冯 伟, 王延荣, 魏大盛. 三维四向编织复合材料细观建模[J]. 航空动力学报, 2013, 28(6): 1243-1249. Feng Wei, Wang Yanrong, Wei Dasheng. Meso-scale modeling of 3D four directional braided composites[J]. Journal of Aerospace Power, 2013, 28(6): 1243-1249.
[7]  Hashin Z. Fatigue failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47: 329-334.
[8]  李典森, 卢子兴, 卢文书. 三维四向编织复合材料刚度和强度的理论预测 [J]. 应用数学和力学, 2008(2): 149-156. Li Diansen, Lu Zixing, Lu Wenshu. Theoretical prediction of the stiffness and strength of three-dimensional and four-directional braided composites[J]. Applied Mathematics and Mechanics, 2008(2): 149-156.
[9]  卢子兴, 刘振国, 麦汉超, 等. 三维编织复合材料强度的数值预报 [J]. 北京航空航天大学学报, 2002, 28(5): 563-565. Lu Zixing, Liu Zhenguo, Mai Hanchao, et al. Numerical prediction of strength for 3D braided composites [J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(5): 563-565.
[10]  徐 焜, 许希武. 三维编织复合材料渐进损伤的非线性数值分析 [J]. 力学学报, 2007, 39(3): 398-407. Xu Kun, Xu Xiwu. Nonlinear numerical analysis of progressive damage of 3D braided composites [J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(3): 398-407.
[11]  张 超, 许希武, 毛春见. 三维编织复合材料渐进损伤模拟及强度预测 [J]. 复合材料学报, 2011, 28(2): 222-230. Zhang Chao, Xu Xiwu, Mao Chunjian. Progressive damage simulation and strength prediction of 3D braided composites[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 222-230.
[12]  Linde P, Pleitner J, de Boer H, et al. Modelling and simulation of fiber metal laminates[C]//2004 ABAQUS Users Conference. 2004: 421-439.
[13]  Li D S, Lu Z X, Chen L, et al. Microstructure and mechanical properties of three-dimensional five-directional braided composites [J]. International Journal of Solids and Structures, 2009, 46(18-19): 3422-3432.
[14]  Lu Z X, Wang C Y, Xia B, et al. Effect of interfacial properties on the uniaxial tensile behavior of three-dimensional braided composites[J]. Computational Materials Science, 2013, 79: 547-557.
[15]  Fang G D, Liang J, Wang B L. Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension[J]. Composite Structures, 2009, 89(1): 126-133.
[16]  Lu Z X, Xia B, Yang Z Y. Investigation on the tensile properties of three-dimensional full five-directional braided composites[J]. Computational Materials Science, 2013, 77: 445-455.
[17]  Jacques L. A micromechanics-based approach to the mechanical behavior of brittle-matrix composites[J]. Composites Science and Technology, 2001, 61(15): 2259-2272.
[18]  Evans A G, Zok F W. The physics and mechanics of fibre-reinforced brittle matrix composites[J]. Journal of Materials Science, 1994, 29(15): 3857-3896.
[19]  Curtin W A, Ahn B K, Takeda N. Modeling brittle and tough stress strain behavior in unidirectional ceramic matrix composites [J]. Acta Materialia, 1998, 46(10): 3409-3420.
[20]  Chaboche J L, Maire J F. A new micromechanics based CDM model and its application to CMC's[J]. Aerospace Science and Technology, 2002, 6(2): 131-145.
[21]  Ladeveze P. A damage computational approach for composites: Basic aspects and micromechanical relations [J]. Computational Mechanics, 1995, 17(1): 142-150.
[22]  Kuhn J L, Charalambides P G. Elastic response of porous matrix plain weave fabric composites: Part I-modeling [J]. Journal of Composite Materials, 1998, 32(16): 1426-1471.
[23]  Namazu T, Ishikawa T, Hasegawa Y. Influence of polymer infiltration and pyrolysis process on mechanical strength of polycarbosilane-derived silicon carbide ceramics [J]. Journal of Materials Science, 2011, 46(9): 3046-3051.
[24]  Bassani J L. Linear densification and microcracking in sintering compacts[J]. Mechanics of Materials, 1991, 12(2): 119-130.
[25]  Kuhn J L, Charalambides P G. Elastic response of porous matrix plain weave fabric composites: Part II-results [J]. Journal of Composite Materials, 1998, 32(16): 1472-1507.
[26]  Peters P W M, Martin E, Pluvinage P. Influence of porosity and fibre coating on engineering elastic moduli of fibre-reinforced ceramics (SiC/SiC) [J]. Composites, 1995, 26(2): 108-114.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133