全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gd0.2Ce0.8O2包覆LaNi0.6Fe0.4O3-δ阴极材料抗铬污染性能

, PP. 1635-1641

Keywords: 阴极,Cr基合金,Cr沉积,交流阻抗谱图,固体氧化物燃料电池

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用丝网印刷和共烧结制备LaNi0.6Fe0.4O3-δ(LNF)/Sc0.1Zr0.9O1.95(ScSZ)/LaNi0.6Fe0.4O3-δ对称电池.以硝酸铈和硝酸钆为原料、柠檬酸为燃料,采用燃烧法制备质量分数为21.3%的Gd0.2Ce0.8O2(GDC)包覆的LNF阴极.电化学阻抗谱(EIS)表明:在750℃工作温度下,当无Cr基合金接触时,质量分数21.3%的GDC包覆的LNF经过1200h的搁置,其极化电阻由0.13Ω·cm2增加至0.40Ω·cm2,而纯LNF经过500h的搁置,极化电阻由0.70Ω·cm2增加至2.36Ω·cm2,GDC的包覆加速了气体/阴极/电解质三相界面反应区的扩散过程,降低了阴极极化电阻;当有Cr基合金接触时,相对于质量分数为21.3%的GDC包覆的LNF阴极,LNF/ScSZ界面处沉积出大量Cr2O3,减缓了活性粒子在三相界面处的扩散,故其极化电阻远大于相同条件下质量分数为21.3%的GDC包覆的LNF阴极的极化电阻,质量分数为21.3%的GDC包覆的LNF阴极具有较佳的抗铬污染性能.

References

[1]  Yang Z, Weil K S, Paxton D M, et al. Selection and evaluation of heat-resistant alloys for SOFC interconnect applications [J]. Journal of the Electrochemical Society, 2003, 150(9): 1188-1201.
[2]  吕世权, 龙国徽, 孟祥伟, 等.钙钛矿型固体氧化物燃料电池阴极材料 [J]. 电源技术, 2010, 34(7): 734-737. Lv Shiquan, Long Guohui, Meng Xiangwei, et al. Perovskite cathode for solid oxide fuel cells [J]. Chinese Journal of Power Sources, 2010, 34(7): 734-737.
[3]  郭友斌, 陆丽华, 储 凌, 等. 类钙钛矿IT-SOFC阴极材料研究进展 [J]. 硅酸盐通报, 2009, 28(5): 991-996. Guo Youbin, Lu Lihua, Chu Ling, et al. Research progress in perovskite-like cathode for intermediate temperature solid oxide fuel cells [J]. Bulletin of the Chinese Ceramic Society, 2009, 28(5): 991-996.
[4]  邬理伟, 郑颖平, 孙岳明, 等. 固体氧化物燃料电池复合阴极研究进展 [J]. 电池工业, 2010, 15(1): 53-56. Wu Liwei, Zheng Yingping, Sun Yueming, et al. Research progress in composite cathode of SOFC [J]. Chinese Battery Industry, 2010, 15(1): 53-56.
[5]  Kadowaki T, Shiomitsu T, Marsuda E, et al. Applicability of heat resisting alloys to the separator of planar type solid oxide fuel cell [J]. Solid State Ionics, 1993, 67(1-2): 65-69.
[6]  Fergus J W. Metallic interconnects for solid oxide fuel cells [J]. Materials Science and Engineering A, 2005, 397(1-2): 271-283.
[7]  Horita T, Xiong Y, Kishimoto H, et al. Application of Fe-Cr alloys to solid oxide fuel cells for cost-reduction: Oxidation behavior of alloys in methane fuel [J]. Journal of Power Sources, 2004, 131(1-2): 293-298.
[8]  Li W L, Lu K, Xia Z B. Interaction of (La1-x Sr x ) n Co1-y FeyO3-δ cathodes and AISI 441 interconnect for solid oxide fuel cells [J]. Journal of Power Sources, 2013, 237: 119-127.
[9]  Tucker M C, Kurokawa H, Jacobson C P, et al. A fundamental study of chromium deposition on solid oxide fuel cell cathode materials [J]. Journal of Power Sources, 2006, 160(1): 130-138.
[10]  Konysheva E, Penkalla H, Wessel E, et al. Chromium poisoning of perovskite cathodes by the ODS alloy Cr5Fe1Y2O3 and the high chromium ferritic steel crofer22APU [J]. Journal of the Electrochemical Society, 2006, 153(4): 765-773.
[11]  Yokokawa H, Horita T, Sakai N, et al. Thermodynamic considerations on Cr poisoning in SOFC cathodes [J]. Solid State Ionics, 2006, 177(35-36): 3193-3198.
[12]  Liu D J, Almer J, Cruse T. Characterization of Cr poisoning in a solid oxide fuel cell cathode using a high energy X-ray microbeam [J]. Journal of the Electrochemical Society, 2010, 157(5): 744-750.
[13]  Badwal S P S, Deller R, Foger K, et al. Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells [J]. Solid State Ionics, 1997, 99(3-4): 297-310.
[14]  Jiang S P, Zhen Y D. Mechanism of Cr deposition and its application in the development of Cr-tolerant cathodes of solid oxide fuel cells [J]. Solid State Ionics, 2008,179(27-32): 1459-1464.
[15]  Jiang S P, Zhang J P, Apateanu L, et al. Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells: III. effect of air flow [J]. Journal of the Electrochemical Society, 2001, 148(7): 447-455.
[16]  Chiba R, Yoshimura F, Sakurai Y. An investigation of LaNi1-x Fex O3 as a cathode material for solid oxide fuel cells [J]. Solid State Ionics, 1999, 124(3-4): 281-288.
[17]  Zhen Y D, Tok A I Y, Jiang S P, et al. La(Ni,Fe)O3 as a cathode material with high tolerance to chromium poisoning for solid oxide fuel cells [J]. Journal of Power Sources, 2007, 170(1): 61-66.
[18]  Laua G Y, Tucker M C, Jacobson C P, et al. Chromium transport by solid state diffusion on solid oxide fuel cell cathode [J]. Journal of Power Sources, 2010, 195(22): 7540-7547.
[19]  Stodolny M K, Boukamp B A, Blank D H A, et al. Impact of Cr-poisoning on the conductivity of LaNi0.6Fe0.4O3 [J]. Journal of Power Sources, 2011, 196(22): 9290-9298.
[20]  Stodolny M K, Boukamp B A, Blank D H A, et al. Cr-poisoning of a LaNi0.6Fe0.4O3 cathode under current load [J]. Journal of Power Sources, 2012, 209: 120-129.
[21]  Orui H, Watanabe K, Chiba R, et al. Application of LaNi(Fe)O3 as SOFC cathode [J]. Journal of the Electrochemical Society, 2004, 151(9): 1412-1417.
[22]  Bevilacqua M, Montini T, Tavagnacco C, et al. Preparation, characterization, and electrochemical properties of pure and composite LaNi0.6Fe0.4O3-based cathodes for IT-SOFC [J].Chemistry of Materials, 2007,19(24): 5926-5936.
[23]  Hashimoto S I, Kammer K, Larsen P H, et al. A study of Pr0.7Sr0.3Fe1-x Nix O3-δ as a cathode material for SOFCs with intermediate operating temperature [J]. Solid State Ionics, 2005, 176: 1013-1020.
[24]  Jain S R, Adiga K C, Vemeker V R P. A new approach to thermochemical calculation of condensed fuel-oxidizer mixtures [J]. Combustion and Flame, 1981, 40(1): 71-76.
[25]  刘 珩, 黄 波, 朱新坚. 中温固体氧化物燃料电池LaNi0.6Fe0.4O3-δ 阴极材料的制备及性能表征 [J]. 电化学, 2011, 17(4): 421-426. Liu Heng, Huang Bo, Zhu Xinjian. Preparation and characterization of the LaNi0.6Fe0.4O3-δ cathode for intermediate temperature solid oxide fuel cell [J]. Electrochemistry, 2011, 17(4): 421-426.
[26]  Huang B, Ye X F, Wang S R, et al. Performance of Ni/ScSZ cermet anode modified by coating with Gd0.2Ce0.8O2 for a SOFC running on methane fuel [J]. Journal of Power Sources, 2006, 162(2): 1172-1181.
[27]  Jiang S P, Leng Y J, Chan S H, et al. Development of (La,Sr)MnO3-based cathodes for intermediate temperature solid oxide fuel cells [J]. Electrochemical and Solid-State Letters, 2003, 6(4): 67-70.
[28]  Binder W O. The corrosion handbook [M]. New York: John Wiley and Sons, 1966: 640.
[29]  Taniguchi S, Kadowaki M, Kawamura H, et al. Degradation phenomena in the cathode of a solid oxide fuel cell with an alloy separator [J]. Journal of Power Sources, 1995, 55(1): 73-79.
[30]  Skorodumova N V, Simak S I, Simak B I, et al. Quantum origin of the oxygen storage capability of ceria [J]. Physical Review Letters, 2002, 89(16): 166601.
[31]  Jiang S P, Wang W. Fabrication and performance of GDC-impregnated (La,Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells [J]. Journal of the Electrochemical Society, 2005, 152(7): 1398-1408.
[32]  Jiang S P. Use of gaseous Cr species to diagnose surface and bulk process for O2 reduction in solid oxide fuel cells [J]. Journal of Applied Electrochemistry, 2001, 31(2): 181-192.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133