全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钛表面聚氨酯涂层的生物矿化及其细胞生物学响应

, PP. 1612-1617

Keywords: 钛种植体,聚氨酯,涂层,生物矿化,细胞培养

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对当前钛种植体在临床使用中因界面不匹配导致的种植失败问题,从仿生学角度出发,采用提拉法在钛表面涂覆聚氨酯(PU)高分子涂层,并通过过饱和Ca-P溶液浸泡试验在PU表面原位矿化生成了无机沉积物.采用SEM、EDX、IR、XRD、DSC-TG及接触角测定仪等对矿化后PU表面的理化性能进行了表征和分析,并通过细胞培养试验初步考察了MG63细胞在矿化前后PU表面的增殖及生长情况.结果表明,PU表面矿化物是由纳米片状晶体先聚集堆叠形成团簇状微球,然后微球间互相融合生长而形成的,其成分主要是弱结晶的非化学计量的羟基磷灰石晶体,而且矿化后的PU涂层亲水性更佳,更利于MG63细胞的黏附及增殖.

References

[1]  Hanawa T. An overview of biofunctionalization of metals in Japan [J]. Journal of the Royal Society Interface, 2009, 6(Suppl.3): 361-369.
[2]  Variola F, Brunski J B, Orsini G, et al. Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives [J]. Nanoscale, 2011, 3(2): 335-353.
[3]  Aparicio C, Padrós A, Gil F J. In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(8): 1672-1682.
[4]  Yazici H, Fong H, Wilson B, et al. Biological response on a titanium implant-grade surface functionalized with modular peptides [J]. Acta Biomatererials, 2013, 9(2): 5341-5352.
[5]  Khatayevich D, Gungormus M, Yazici H, et al. Biofunctiona-lization of materials for implants using engineered peptides [J]. Acta Biomaterials, 2010, 6(12): 4634-4641.
[6]  Kado T, Hidaka T, Aita H, et al. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells [J]. Applied Surface Science, 2012, 262: 240-247.
[7]  Martin H J, Schulz K H, Bumgardner J D, et al. XPS study on the use of 3-aminopropyltriethoxysilane to bond chitosan to a titanium surface [J]. Langmuir, 2007, 23(12): 6645-6651.
[8]  Stadlinger B, Ferguson S J, Eckelt U, et al. Biomechanical evaluation of a titanium implant surface conditioned by a hydroxide ion solution [J]. British Journal of Oral & Maxillofacial Surgery, 2012, 50(1): 74-79.
[9]  Bigi A, Fini M, Bracci B, et al. The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model [J]. Biomaterials, 2008, 29(11): 1730-1736.
[10]  Colombo J S, Satoshi S, Okazaki J, et al. In vivo monitoring of the bone healing process around different titanium alloy implant surfaces placed into fresh extraction sockets [J]. Journal of Dentistry, 2012, 40(4): 338-346.
[11]  Lian Z Q, Guan H, Loo Y C. Optimum degree of bone-implant contact in bone remodeling induced by dental implant [J]. Procedia Engineering, 2011(14): 2972-2979.
[12]  Soares C J, Pizi E C G, Fonseca R B, et al. Influence of root embedment material and periodontal ligament simulation on fracture resistance tests [J]. Brazilian Oral Reasearch, 2005, 19(1): 11-16.
[13]  Piattelli A, Cordioli G P, Passi P, et al. Formation of dental hard tissues and periodontal ligament around titanium implants after tooth-bud injury: A pilot study [J]. JOMI on CD-ROM, 1994(4): 417-421.
[14]  罗智斌, 丁学强. 低弹性模量纯钛种植体生物力学测试——体外模型试验 [J]. 中国口腔种植学杂志, 2002, 7(3): 118-120, 131. Luo Zhibin, Ding Xueqiang. The biomechanics test of dental implants made of titanium with the low elastic modulus [J]. Chinese Journal of Oral Implantology, 2002, 7(3): 118-120, 131.
[15]  Tangpasuthadol V, Pongchaisirikul N, Hoven V P. Surface modification of chitosan films: effects of hydrophobicity on protein adsorption [J]. Carbohydrate Research, 2003, 338(9): 937-942.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133